Citation: | PENG Bo, TANG Ju, ZHANG Yuanyuan, CAI Xiaoyu, MENG Fanhe. Automatic Traffic State Recognition from Road Videos Based on 3D Convolution Neural Network[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 153-159. doi: 10.3969/j.issn.0258-2724.20191169 |
WEI L, HONG Y D. Real-time road congestion detection based on image texture analysis[J]. Procedia Engineering, 2016, 137: 196-201. doi: 10.1016/j.proeng.2016.01.250
|
SHI X, SHAN Z, ZHAO N. Learning for an aesthetic model for estimating the traffic state in the traffic video[J]. Neurocomputing, 2016, 181: 29-37. doi: 10.1016/j.neucom.2015.08.099
|
崔华,袁超,魏泽发,等. 利用FCM对静态图像进行交通状态识别[J]. 西安电子科技大学学报,2017,44(6): 85-90.
CUI Hua, YUAN Chao, WEI Zefa, et al. Traffic state recognition using state images and FCM[J]. Journal of Xidian University, 2017, 44(6): 85-90.
|
LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. doi: 10.1109/5.726791
|
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[C]//3rd International Conference on Learning Representations. San Diego: [s.n.], 2015: 1-14.
|
JI S, XU W, YANG M, et al. 3D Convolutional neural networks for human action recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 221-231. doi: 10.1109/TPAMI.2012.59
|
TRAN D, BOURDEV L, FERGUS R, et al. Learning spatiotemporal features with 3D convolutional networks[C]//IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 4489-4497.
|
XU H, DAS A, SAENKO K. R-C3D: region convolutional 3D network for temporal activity detection[C]//IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 5794-5803.
|
TRAN D, WANG H, TORRESANI L, et al. A closer look at spatiotemporal convolutions for action recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 6450-6459.
|