• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 56 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
GUO Lie, GE Pingshu, WANG Xiao, WANG Dongxing. Visual Simultaneous Localization and Mapping Algorithm Based on Convolutional Neural Network to Optimize Loop Detection[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 706-712, 768. doi: 10.3969/j.issn.0258-2724.20190723
Citation: GUO Lie, GE Pingshu, WANG Xiao, WANG Dongxing. Visual Simultaneous Localization and Mapping Algorithm Based on Convolutional Neural Network to Optimize Loop Detection[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 706-712, 768. doi: 10.3969/j.issn.0258-2724.20190723

Visual Simultaneous Localization and Mapping Algorithm Based on Convolutional Neural Network to Optimize Loop Detection

doi: 10.3969/j.issn.0258-2724.20190723
  • Received Date: 19 Jul 2019
  • Rev Recd Date: 08 Mar 2020
  • Available Online: 01 Apr 2021
  • Publish Date: 15 Aug 2021
  • Traditional visual SLAM (simultaneous localization and mapping) without loop detection may lead to error accumulation. Even if there exits loop detection, it is unable to be applied to the lightweight applications because of its low accuracy and efficiency. Thus, a visual SLAM with loop detection optimization is studied. In the front-end estimation, ORB (oriented fast and rotated brief) feature points were abstracted and matched. PnP (perspective-n-point) was solved for the successful matched point to estimate the camera motion and screen out the key frame images. In the back-end optimization, SqueezeNet convolution neural network (CNN) was used to extract the feature vectors. The cosine similarities were calculated to determine whether there were loops or not. If there was a loop, the corresponding constraint was added to the posture graph. Then the global posture was optimized by using the graph optimization theory. Finally, tests and comparisons were conducted on the data sets produced by our research group and the public data sets of TUM. The results show that the proposed algorithm can detect loops successfully and add constraints to global trajectory optimization compared with the non-loop detection algorithm. Compared with the traditional word bag method, the recall rate of this method can be increased by 21% and the calculation time can be reduced by 74% under the same loop detection accuracy. Compared with RGB-D SLAM algorithm, the error of this method can be reduced by 29%.

     

  • loading
  • 高翔, 张涛. 视觉SLAM十四讲[M]. 北京: 电子工业出版社, 2017: 9-32.
    蔡军,陈科宇,张毅. 基于Kinect的改进移动机器人视觉SLAM[J]. 智能系统学报,2018,13(5): 734-740.

    CAI Jun, CHEN Keyu, ZHANG Yi. Improved V-SLAM for mobile robots based on Kinect[J]. CAAI Transactions on Intelligent Systems, 2018, 13(5): 734-740.
    吕宪伟. 基于RGB-D数据的SLAM算法研究[D]. 北京: 北京理工大学, 2016.
    DAVISON A J, REID I D, MOLTON N D, et al. MonoSLAM:real-time single camera SLAM[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(6): 1052-1067. doi: 10.1109/TPAMI.2007.1049
    KLEIN G, MURRAY D. Parallel tracking and mapping for small AR workspaces[C]//6th IEEE and ACM International Symposium on Mixed and Augmented Reality. Piscataway: IEEE, 2007: 225-234.
    MUR-ARTAL R, MONTIEL J M M, TARDOS J D. ORB-SLAM: a versatile and accurate monocular SLAM system[J]. IEEE Transactions on Robotics, 2015, 31(5): 1147-1163. doi: 10.1109/TRO.2015.2463671
    徐晓苏,代维,杨博,等. 室内环境下基于图优化的视觉惯性SLAM方法[J]. 中国惯性技术学报,2017,25(3): 313-319.

    XU Xiaosu, DAI Wei, YANG Bo, et al. Visual-aid inertial SLAM method based on graph optimization in indoor[J]. Journal of Chinese Inertial Technology, 2017, 25(3): 313-319.
    余杰. 基于ORB关键帧闭环检测算法的SLAM方法研究[D]. 杭州: 浙江工业大学, 2016.
    RUBLEE E, RABAUG V, KONOLIGE K, et al. ORB: an efficient alternative to SIFT or SURF[C]// International Conference on Computer Vision. Piscataway: IEEE, 2011: 2564-2571.
    SCARAMUZZA D, FRAUNDORFER F. Visual odometry[J]. IEEE Robotics and Automation Magazine, 2011, 18(4): 80-92. doi: 10.1109/MRA.2011.943233
    LOWE D G. Object recognition from local scale-invariant features[C]//International Conference on Computer Vision. Piscataway: IEEE, 1999: 1150-1157
    席志红,李爽,甘兴利. PnP算法在室内定位中的应用[J]. 无线电工程,2017,47(10): 39-44.

    XI Zhihong, LI Shuang, GAN Xingli. PnP solution applied in indoor location[J]. Radio Engineering, 2017, 47(10): 39-44.
    刘国忠,胡钊政. 基于SURF和ORB全局特征的快速闭环检测[J]. 机器人,2017,39(1): 36-45.

    LIU Guozhong, HU Zhaozheng. Fast loop closure detection based on holistic features from SURF and ORB[J]. Robot, 2017, 39(1): 36-45.
    GAO X, ZHANG T. Loop closure detection for visual slam systems using deep neural networks[C]//Chinese Control Conference. Piscataway: IEEE, 2015: 5851-5856.
    SHANG W, SOHN K, ALMEIDA D, et al. Understanding and improving convolutional neural networks via concatenated rectified linear units[C]//International Conference on Machine Learning. Princeton: IMLS, 2016: 3276-3284.
    KUMMERLE R, GRISETTI G, STRASDAT H, et al. G2o: a general framework for graph optimization[C]// IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2011: 3607-3613.
    JIA Y Q, SHELHAMER E, JEFF D. Caffe: convolutional architecture for fast feature embedding[C]//ACM International Conference on Multimedia. New York: ACM, 2014: 675-678.
    STURM J, ENGELHARD N, ENDRES F, et al. A benchmark for the evaluation of RGB-D SLAM systems[C]//International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2012: 573-580.
    ENDRES F, HESS J, STURM J, et al. 3-D mapping with an RGB-D camera[J]. IEEE Transactions on Robotics, 2014, 30(1): 177-187. doi: 10.1109/TRO.2013.2279412
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article views(687) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return