Citation: | HUANG Haibo, ZHENG Zhiwei, ZHANG Siwen, WU Yudong, YANG Mingliang, DING Weiping. Optimization of Automobile Firewall Acoustic Package for Multi-level Goals[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20211086 |
To study the influence of automotive acoustic package design parameters on its multi-performance objectives, firstly, the traditional DBNs (deep belief networks) method was modified, and the SVR-DBNs (support vector regression-deep belief networks) model was proposed to improve the accuracy of model mapping. Secondly, from the perspective of vehicle noise transfer relationship and hierarchical target decomposition, a multi-level target prediction and analysis method was proposed. Finally, the proposed method was applied to the multi-objective prediction and optimization analysis of the MTL (mean transmission loss), weight and cost of the acoustic package for a real vehicle.The results show that the accuracy of SVR-DBNs method for the MTL, weight and cost target prediction of the acoustic package is higher than 0.975, which is better than that of the traditional BPNN(back propagation neural network), SVR and DBNs models. The optimization results based on the SVR-DBNs model are appropriate to the measured results, the comprehensive relative error of the predicted and tested targets is 1.09% (the absolute values of the relative errors of MTL, weight and cost are 1.44%, 1.04% and 0.71%, respectively). Compared with the original status, the MTL, weight and cost of the acoustic package have increased by 5.51%, 9.01% and 4.40%, respectively.
[1] |
PANG J. Noise and vibration control in automotive bodies[M]. Chichester: John Wiley & Sons, Ltd., 2018.
|
[2] |
《中国公路学报》编辑部. 中国路基工程学术研究综述·2021[J]. 中国公路学报,2021,34(3): 1-49. doi: 10.3969/j.issn.1001-7372.2021.03.001
Editorial Department of China Journal of Highway and Transport. Review on China’s subgrade engineering research·2021[J]. China Journal of Highway and Transport, 2021, 34(3): 1-49. doi: 10.3969/j.issn.1001-7372.2021.03.001
|
[3] |
董俊红. 面向汽车高频噪声分析的不确定性理论与应用研究[D]. 长春: 吉林大学, 2020.
|
[4] |
EGAB L, WANG X. On the analysis of coupling strength of a stiffened plate-cavity coupling system using a deterministic-statistical energy analysis method[J]. Mechanical Systems and Signal Processing, 2022, 164: 108234.1-108234.13.
|
[5] |
唐荣江,李申芳,郑伟光,等. 利用混合FE-SEA方法的前围隔声性能优化设计[J]. 应用声学,2019,38(1): 22-28.
TANG Rongjiang, LI Shenfang, ZHENG Weiguang, et al. Optimization design of sound insulation property in front wall using hybrid FE-SEA method[J]. Journal of Applied Acoustics, 2019, 38(1): 22-28.
|
[6] |
LEE H R, KIM H Y, JEON J H, et al. Application of global sensitivity analysis to statistical energy analysis: vehicle model development and transmission path contribution[J]. Applied Acoustics, 2019, 146: 368-389. doi: 10.1016/j.apacoust.2018.11.023
|
[7] |
HUANG H B, HUANG X R, DING W P, et al. Uncertainty optimization of pure electric vehicle interior tire/road noise comfort based on data-driven[J]. Mechanical Systems and Signal Processing, 2022, 165: 108300.1-108300.23.
|
[8] |
CHAUDHARI V V, RADHIKA V, VIJAY R. Frontloading approach for sound package design for noise reduction and weight optimization using statistical energy analysis[J]. SAE International Journal of Vehicle Dynamics, Stability, and NVH, 2017, 1(1): 66-72. doi: 10.4271/2017-26-0222
|
[9] |
周信,肖新标,何宾,等. 高速铁路声屏障插入损失影响因素及规律[J]. 西南交通大学学报,2014,49(6): 1024-1031. doi: 10.3969/j.issn.0258-2724.2014.06.014
ZHOU Xin, XIAO Xinbiao, HE Bin, et al. Influential factors and rules for insertion loss of high-speed railway noise barriers[J]. Journal of Southwest Jiaotong University, 2014, 49(6): 1024-1031. doi: 10.3969/j.issn.0258-2724.2014.06.014
|
[10] |
代浩,金铭,陈星,等. 数据驱动的应用自适应技术综述[J]. 计算机研究与发展,2022,59(11): 2549-2568.
DAI Hao, JIN Ming, CHEN Xing, et al. Data-driven application adaptive technology: a survey[J]. Computer Research and Development, 2022, 59(11): 2549-2568.
|
[11] |
贺岩松,张辉,夏小均,等. 轿车车内声学包多目标优化与分析[J]. 机械科学与技术,2017,36(3): 455-461.
HE Yansong, ZHANG Hui, XIA Xiaojun, et al. Multi-objective optimization analysis of a passenger car’s interior sound packages[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(3): 455-461.
|
[12] |
SCHAEFER N, BERGEN B, KEPPENS T, et al. A design space exploration framework for automotive sound packages in the mid-frequency range[C]//Noise and Vibration Conference and Exhibition. Leuven: SAE International, 2017: 1751.1-1751.11.
|
[13] |
孙志军,薛磊,许阳明,等. 深度学习研究综述[J]. 计算机应用研究,2012,29(8): 2806-2810. doi: 10.3969/j.issn.1001-3695.2012.08.002
SUN Zhijun, XUE Lei, XU Yangming, et al. Overview of deep learning[J]. Application Research of Computers, 2012, 29(8): 2806-2810. doi: 10.3969/j.issn.1001-3695.2012.08.002
|
[14] |
MOHAMED A R, DAHL G E, HINTON G. Acoustic modeling using deep belief networks[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2012, 20(1): 14-22. doi: 10.1109/TASL.2011.2109382
|
[15] |
SRIVASTAVA N, SALAKHUTDINOV R. Learning representations for multimodal data with deep belief nets[C]//International Conference on Machine Learning Workshop.Edinburgh: [s.n.], 2012: 1-8.
|
[16] |
黄海波. 基于系统目标决策的汽车NVH设计理论与方法研究[D]. 成都: 西南交通大学, 2017.
|
[17] |
ZHANG J, PANG J, ZHANG S W, et al. A lightweight dash insulator development and engineering application for the vehicle NVH improvement[C]//Noise and Vibration Conference and Exhibition. Leuven: SAE International, 2015: 2342.1-2342.5.
|
[18] |
姜东明,丁渭平,苏瑞强,等. 汽车前围声学包中频插入损失仿真计算[J]. 噪声与振动控制,2018,38(4): 106-110,202.
JIANG Dongming, DING Weiping, SU Ruiqiang, et al. Simulation of insertion loss of vehicle firewall’s sound package in intermediate frequency range[J]. Noise and Vibration Control, 2018, 38(4): 106-110,202.
|
[19] |
潘广源,柴伟,乔俊飞. DBN网络的深度确定方法[J]. 控制与决策,2015,30(2): 256-260. doi: 10.13195/j.kzyjc.2013.1390
PAN Guangyuan, CHAI Wei, QIAO Junfei. Calculation for depth of deep belief network[J]. Control and Decision, 2015, 30(2): 256-260. doi: 10.13195/j.kzyjc.2013.1390
|
[20] |
黄海波,李人宪,杨琪,等. 基于DBNs的车辆悬架减振器异响鉴别方法[J]. 西南交通大学学报,2015,50(5): 776-782. doi: 10.3969/j.issn.0258-2724.2015.05.002
HUANG Haibo, LI Renxian, YANG Qi, et al. Identifying abnormal noise of vehicle suspension shock absorber based on deep belief networks[J]. Journal of Southwest Jiaotong University, 2015, 50(5): 776-782. doi: 10.3969/j.issn.0258-2724.2015.05.002
|
[21] |
BENGIO Y, DELALLEAU O. Justifying and generalizing contrastive divergence[J]. Neural Computation, 2009, 21(6): 1601-1621. doi: 10.1162/neco.2008.11-07-647
|
[22] |
LI Y, WANG N, SHI J, et al. Adaptive batch normalization for practical domain adaptation[J]. Pattern Recognition, 2018, 80: 109-117. doi: 10.1016/j.patcog.2018.03.005
|
[23] |
SAE. Laboratory measurement of the airborne sound barrier performance: J1400—2017[S]. [S. l.]: SAE international, 2017.
|
[1] | ZHAO Chunfa, LI Yuhan, PENG Yeye, YANG Jing, NING Xiaofang, FENG Yang. Aerodynamic Characteristics of Open Wire of Superconducting Maglev Train and Its Influence on Levitation State[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 793-802. doi: 10.3969/j.issn.0258-2724.20240470 |
[2] | ZHOU Danfeng, ZHU Pengxiang, QU Minghe, WANG Lianchun, LI Jie. Influence of Bridge Parameters on Vehicle-Bridge Coupling Stability of Maglev System[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 823-832. doi: 10.3969/j.issn.0258-2724.20240381 |
[3] | XU Fengqiu, QIU Yi, HE Jiawen, XU Xianze. Remanence Compensation of Maglev Planar Motor Based on Digital Twin Model[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 1050-1059. doi: 10.3969/j.issn.0258-2724.20240556 |
[4] | CAO Yi, ZHANG Min, LIU Jing, LIU Qinghui, MA Weihua, SHAN Lei, LI Tie. Fuzzy Comprehensive Evaluation and Improved Design of Levitation System for Medium and Low Speed Maglev Trains[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 874-883. doi: 10.3969/j.issn.0258-2724.20240190 |
[5] | SUN Yougang, ZHANG Dandan, JI Wen, XU Junqi. Fuzzy Compensation-Based Non-Singular Terminal Sliding Mode Control of Maglev Vehicle Levitation System[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 803-811. doi: 10.3969/j.issn.0258-2724.20240499 |
[6] | LI Zikang, DAI Chunhui, HUANG Cuicui, LONG Zhiqiang. Active Disturbance Rejection Speed Control for Maglev Trains Based on Multiple Population Genetic Algorithm[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 912-920. doi: 10.3969/j.issn.0258-2724.20240113 |
[7] | WANG Zhiqiang, GUO Weipeng, SANG Ziliang, LI Bowen, LONG Zhiqiang, LI Xiaolong. Optimized Control Method for Guidance System of High-Speed Maglev Train[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 833-841, 864. doi: 10.3969/j.issn.0258-2724.20230516 |
[8] | LIU Hongen, HU Minsheng, HU Hailin. Reinforcement Learning Braking Control of Maglev Trains Based on Self-Learning of Hybrid Braking Features[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 839-847. doi: 10.3969/j.issn.0258-2724.20230517 |
[9] | CHEN Ping, SHI Tiancheng, YU Mingyue, SHAN Lei. Self-Learning Model Reference Adaptive Levitation Control Strategy[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 799-807. doi: 10.3969/j.issn.0258-2724.20220752 |
[10] | ZHAI Mingda, ZHU Pengbo, LI Xiaolong, LONG Zhiqiang, LIU Xin, YANG Bin. Evaluation and Verification for Active Guidance Ability of EMS Maglev Train[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 514-521. doi: 10.3969/j.issn.0258-2724.20210920 |
[11] | LI Songqi, LUO Cheng, ZHANG Kunlun. Correction of Magnetic Force of Hybrid Electromagnet Based on Magnetic Flux Leakage Compensation[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 604-609. doi: 10.3969/j.issn.0258-2724.20210843 |
[12] | WANG Keren, LUO Shihui, MA Weihua, CHEN Xiaohao, ZOU Ruiming. Vehicle-Guideway Coupling Vibration Comparative Analysis for Maglev Vehicles While Standing Still[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 282-289. doi: 10.3969/j.issn.0258-2724.20170891 |
[13] | JING Yongzhi, HE Fei, LIAO Haijun, WANG Ying, LIU Guoqing, DONG Jinwen. Temperature Compensation of Maglev Vehicle Gap Sensor Based on RBF-NN Optimized by PSO[J]. Journal of Southwest Jiaotong University, 2018, 53(2): 367-373, 384. doi: 10.3969/j.issn.0258-2724.2018.02.020 |
[14] | WANG Keren, LUO Shihui, ZHANG Jiye. Design of Magnetic Levitation Controller and Static Stability Analysis[J]. Journal of Southwest Jiaotong University, 2017, 30(1): 118-126. doi: 10.3969/j.issn.0258-2724.2017.01.017 |
[15] | ZHOU Dajin, CUI Chenyu, MA Jiaqing, ZHAO Lifeng, ZHANG Yong, ZHAO Yong. Starting Characteristics of Linear Motor in Evacuated Tube HTS Side-Suspended Maglev System[J]. Journal of Southwest Jiaotong University, 2016, 29(4): 750-758. doi: 10.3969/j.issn.0258-2724.2016.04.021 |
[16] | BIHai-qua, LEI Bo, ZHANG Wei-hua. Numerical Calculation for Turbulent Flow around TR Maglev Train[J]. Journal of Southwest Jiaotong University, 2005, 18(1): 5-8. |
[17] | TANGHuai-ping, GAO Fang-qing. Experimental Research on Dynamic Characteristics and Coupled Vibration of a Maglev Train System[J]. Journal of Southwest Jiaotong University, 2001, 14(2): 149-152. |
[18] | HUJi-shi, PANHui-long. A Design Basis for Collector of Maglev Trains[J]. Journal of Southwest Jiaotong University, 2000, 13(2): 170-173. |
[19] | Zeng Youwen, WangShaohua, ZhanKunlun. A Study on the Vehicle-Guideway Coupling Vibration and Suspension Parameters of Maglev Train[J]. Journal of Southwest Jiaotong University, 1999, 12(2): 168-173. |
1. | 王天,马前涛,郑兆光,杨健,方嘉晟,陈嵘,徐井芒. 循环荷载作用下大坡度地铁道岔钢轨爬行分析. 城市轨道交通研究. 2024(07): 191-196+203 . ![]() | |
2. | 陈乔松,阮莹,王明敏,马前涛,侯明扬,陈嵘,徐井芒. 地铁大坡度道岔车辆通过性能影响因素仿真分析. 城市轨道交通研究. 2024(08): 50-56 . ![]() | |
3. | 周剑,丁玉宝,侯泰成,马前涛,李浩然,李智恒,陈嵘,徐井芒. 大坡度地铁道岔钢轨爬行足尺试验研究. 铁道标准设计. 2023(09): 62-68 . ![]() | |
4. | 胡彦霖,凌亮,王开云. 高速铁路长大坡道动车组运行性能分析方法. 西南交通大学学报. 2022(02): 277-285 . ![]() | |
5. | 裴志远,王嘉诚,毕强,宋洪锐,凌亮,王开云. 川藏铁路客货列车牵引性能研究. 四川轻化工大学学报(自然科学版). 2021(06): 55-63 . ![]() |