• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Recommendations
无砟轨道路基不均匀沉降区高速列车动力特性
张乾 等, 西南交通大学学报, 2023
时速400公里高速铁路轮轨周期性短波不平顺的安全限值研究
胡晓依 等, 西南交通大学学报, 2025
制动工况对高速列车制动盘残余应力及翘曲变形的影响
李志强 等, 西南交通大学学报, 2025
钢轨轧制不平顺激扰下的动车组动力响应特性
杨飞 等, 西南交通大学学报, 2022
不同曲线半径下轨底坡与轮径差最佳匹配研究
朱爱华 等, 浙江工业大学学报, 2024
互通立交鼻端纵坡计算方法探讨
郑立志 等, 城市道桥与防洪, 2025
线间距对时速600公里级高速磁浮列车明线交会气动性能的影响
王峰 等, 空气动力学学报, 2023
Material and microbial perspectives on understanding the role of biochar in mitigating ammonia inhibition during anaerobic digestion
Zhao, Zhi-Jun et al., WATER RESEARCH, 2024
Vibration velocity of x-section cast-in-place concrete (xcc) pile-raft foundation model for a ballastless track
CANADIAN GEOTECHNICAL JOURNAL
Effect of fastening system failure on the micromechanical properties of railway ballast bed
KSCE JOURNAL OF CIVIL ENGINEERING
Powered by
ZHANG Wenbai, LIN Guobin, KANG Jinsong, ZHAO Yuanzhe, LIAO Zhiming. Sensorless Control Method of High-Frequency Injection for Long-Stator Synchronous Motor of Maglev Trains Considering Phase Shift Compensation[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 1032-1041. doi: 10.3969/j.issn.0258-2724.20240310
Citation: HUANG Haibo, ZHENG Zhiwei, ZHANG Siwen, WU Yudong, YANG Mingliang, DING Weiping. Optimization of Automobile Firewall Acoustic Package for Multi-level Goals[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20211086

Optimization of Automobile Firewall Acoustic Package for Multi-level Goals

doi: 10.3969/j.issn.0258-2724.20211086
  • Received Date: 06 Jan 2022
  • Rev Recd Date: 16 Jun 2022
  • Available Online: 18 Jan 2023
  • To study the influence of automotive acoustic package design parameters on its multi-performance objectives, firstly, the traditional DBNs (deep belief networks) method was modified, and the SVR-DBNs (support vector regression-deep belief networks) model was proposed to improve the accuracy of model mapping. Secondly, from the perspective of vehicle noise transfer relationship and hierarchical target decomposition, a multi-level target prediction and analysis method was proposed. Finally, the proposed method was applied to the multi-objective prediction and optimization analysis of the MTL (mean transmission loss), weight and cost of the acoustic package for a real vehicle.The results show that the accuracy of SVR-DBNs method for the MTL, weight and cost target prediction of the acoustic package is higher than 0.975, which is better than that of the traditional BPNN(back propagation neural network), SVR and DBNs models. The optimization results based on the SVR-DBNs model are appropriate to the measured results, the comprehensive relative error of the predicted and tested targets is 1.09% (the absolute values of the relative errors of MTL, weight and cost are 1.44%, 1.04% and 0.71%, respectively). Compared with the original status, the MTL, weight and cost of the acoustic package have increased by 5.51%, 9.01% and 4.40%, respectively.

     

  • [1]
    PANG J. Noise and vibration control in automotive bodies[M]. Chichester: John Wiley & Sons, Ltd., 2018.
    [2]
    《中国公路学报》编辑部. 中国路基工程学术研究综述·2021[J]. 中国公路学报,2021,34(3): 1-49. doi: 10.3969/j.issn.1001-7372.2021.03.001

    Editorial Department of China Journal of Highway and Transport. Review on China’s subgrade engineering research·2021[J]. China Journal of Highway and Transport, 2021, 34(3): 1-49. doi: 10.3969/j.issn.1001-7372.2021.03.001
    [3]
    董俊红. 面向汽车高频噪声分析的不确定性理论与应用研究[D]. 长春: 吉林大学, 2020.
    [4]
    EGAB L, WANG X. On the analysis of coupling strength of a stiffened plate-cavity coupling system using a deterministic-statistical energy analysis method[J]. Mechanical Systems and Signal Processing, 2022, 164: 108234.1-108234.13.
    [5]
    唐荣江,李申芳,郑伟光,等. 利用混合FE-SEA方法的前围隔声性能优化设计[J]. 应用声学,2019,38(1): 22-28.

    TANG Rongjiang, LI Shenfang, ZHENG Weiguang, et al. Optimization design of sound insulation property in front wall using hybrid FE-SEA method[J]. Journal of Applied Acoustics, 2019, 38(1): 22-28.
    [6]
    LEE H R, KIM H Y, JEON J H, et al. Application of global sensitivity analysis to statistical energy analysis: vehicle model development and transmission path contribution[J]. Applied Acoustics, 2019, 146: 368-389. doi: 10.1016/j.apacoust.2018.11.023
    [7]
    HUANG H B, HUANG X R, DING W P, et al. Uncertainty optimization of pure electric vehicle interior tire/road noise comfort based on data-driven[J]. Mechanical Systems and Signal Processing, 2022, 165: 108300.1-108300.23.
    [8]
    CHAUDHARI V V, RADHIKA V, VIJAY R. Frontloading approach for sound package design for noise reduction and weight optimization using statistical energy analysis[J]. SAE International Journal of Vehicle Dynamics, Stability, and NVH, 2017, 1(1): 66-72. doi: 10.4271/2017-26-0222
    [9]
    周信,肖新标,何宾,等. 高速铁路声屏障插入损失影响因素及规律[J]. 西南交通大学学报,2014,49(6): 1024-1031. doi: 10.3969/j.issn.0258-2724.2014.06.014

    ZHOU Xin, XIAO Xinbiao, HE Bin, et al. Influential factors and rules for insertion loss of high-speed railway noise barriers[J]. Journal of Southwest Jiaotong University, 2014, 49(6): 1024-1031. doi: 10.3969/j.issn.0258-2724.2014.06.014
    [10]
    代浩,金铭,陈星,等. 数据驱动的应用自适应技术综述[J]. 计算机研究与发展,2022,59(11): 2549-2568.

    DAI Hao, JIN Ming, CHEN Xing, et al. Data-driven application adaptive technology: a survey[J]. Computer Research and Development, 2022, 59(11): 2549-2568.
    [11]
    贺岩松,张辉,夏小均,等. 轿车车内声学包多目标优化与分析[J]. 机械科学与技术,2017,36(3): 455-461.

    HE Yansong, ZHANG Hui, XIA Xiaojun, et al. Multi-objective optimization analysis of a passenger car’s interior sound packages[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(3): 455-461.
    [12]
    SCHAEFER N, BERGEN B, KEPPENS T, et al. A design space exploration framework for automotive sound packages in the mid-frequency range[C]//Noise and Vibration Conference and Exhibition. Leuven: SAE International, 2017: 1751.1-1751.11.
    [13]
    孙志军,薛磊,许阳明,等. 深度学习研究综述[J]. 计算机应用研究,2012,29(8): 2806-2810. doi: 10.3969/j.issn.1001-3695.2012.08.002

    SUN Zhijun, XUE Lei, XU Yangming, et al. Overview of deep learning[J]. Application Research of Computers, 2012, 29(8): 2806-2810. doi: 10.3969/j.issn.1001-3695.2012.08.002
    [14]
    MOHAMED A R, DAHL G E, HINTON G. Acoustic modeling using deep belief networks[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2012, 20(1): 14-22. doi: 10.1109/TASL.2011.2109382
    [15]
    SRIVASTAVA N, SALAKHUTDINOV R. Learning representations for multimodal data with deep belief nets[C]//International Conference on Machine Learning Workshop.Edinburgh: [s.n.], 2012: 1-8.
    [16]
    黄海波. 基于系统目标决策的汽车NVH设计理论与方法研究[D]. 成都: 西南交通大学, 2017.
    [17]
    ZHANG J, PANG J, ZHANG S W, et al. A lightweight dash insulator development and engineering application for the vehicle NVH improvement[C]//Noise and Vibration Conference and Exhibition. Leuven: SAE International, 2015: 2342.1-2342.5.
    [18]
    姜东明,丁渭平,苏瑞强,等. 汽车前围声学包中频插入损失仿真计算[J]. 噪声与振动控制,2018,38(4): 106-110,202.

    JIANG Dongming, DING Weiping, SU Ruiqiang, et al. Simulation of insertion loss of vehicle firewall’s sound package in intermediate frequency range[J]. Noise and Vibration Control, 2018, 38(4): 106-110,202.
    [19]
    潘广源,柴伟,乔俊飞. DBN网络的深度确定方法[J]. 控制与决策,2015,30(2): 256-260. doi: 10.13195/j.kzyjc.2013.1390

    PAN Guangyuan, CHAI Wei, QIAO Junfei. Calculation for depth of deep belief network[J]. Control and Decision, 2015, 30(2): 256-260. doi: 10.13195/j.kzyjc.2013.1390
    [20]
    黄海波,李人宪,杨琪,等. 基于DBNs的车辆悬架减振器异响鉴别方法[J]. 西南交通大学学报,2015,50(5): 776-782. doi: 10.3969/j.issn.0258-2724.2015.05.002

    HUANG Haibo, LI Renxian, YANG Qi, et al. Identifying abnormal noise of vehicle suspension shock absorber based on deep belief networks[J]. Journal of Southwest Jiaotong University, 2015, 50(5): 776-782. doi: 10.3969/j.issn.0258-2724.2015.05.002
    [21]
    BENGIO Y, DELALLEAU O. Justifying and generalizing contrastive divergence[J]. Neural Computation, 2009, 21(6): 1601-1621. doi: 10.1162/neco.2008.11-07-647
    [22]
    LI Y, WANG N, SHI J, et al. Adaptive batch normalization for practical domain adaptation[J]. Pattern Recognition, 2018, 80: 109-117. doi: 10.1016/j.patcog.2018.03.005
    [23]
    SAE. Laboratory measurement of the airborne sound barrier performance: J1400—2017[S]. [S. l.]: SAE international, 2017.
  • Relative Articles

    [1]ZHOU Danfeng, ZHU Pengxiang, QU Minghe, WANG Lianchun, LI Jie. Influence of Bridge Parameters on Vehicle-Bridge Coupling Stability of Maglev System[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 823-832. doi: 10.3969/j.issn.0258-2724.20240381
    [2]WANG Zhiqiang, GUO Weipeng, SANG Ziliang, LI Bowen, LONG Zhiqiang, LI Xiaolong. Optimized Control Method for Guidance System of High-Speed Maglev Train[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 833-841, 864. doi: 10.3969/j.issn.0258-2724.20230516
    [3]LIU Hongen, HU Minsheng, HU Hailin. Reinforcement Learning Braking Control of Maglev Trains Based on Self-Learning of Hybrid Braking Features[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 839-847. doi: 10.3969/j.issn.0258-2724.20230517
    [4]CHEN Ping, SHI Tiancheng, YU Mingyue, SHAN Lei. Self-Learning Model Reference Adaptive Levitation Control Strategy[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 799-807. doi: 10.3969/j.issn.0258-2724.20220752
    [5]LIU Qinghui, SHAN Lei, MA Weihua, LU Xiangyu, LUO Shihui. Electromagnetic Force Analysis of Medium−Low-Speed Maglev Considering Remanence[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 863-869, 895. doi: 10.3969/j.issn.0258-2724.20220281
    [6]SUN Yougang, XU Junqi, HE Zhenyu, LI Fengxing, CHEN Chen, LIN Guobin. Sliding Mode Cooperative Control of Multi-Electromagnet Suspension System Based on Error Cross Coupling[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 558-565. doi: 10.3969/j.issn.0258-2724.20210924
    [7]ZHAI Mingda, ZHU Pengbo, LI Xiaolong, LONG Zhiqiang, LIU Xin, YANG Bin. Evaluation and Verification for Active Guidance Ability of EMS Maglev Train[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 514-521. doi: 10.3969/j.issn.0258-2724.20210920
    [8]LI Songqi, LUO Cheng, ZHANG Kunlun. Correction of Magnetic Force of Hybrid Electromagnet Based on Magnetic Flux Leakage Compensation[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 604-609. doi: 10.3969/j.issn.0258-2724.20210843
    [9]WANG Keren, LUO Shihui, MA Weihua, CHEN Xiaohao, ZOU Ruiming. Vehicle-Guideway Coupling Vibration Comparative Analysis for Maglev Vehicles While Standing Still[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 282-289. doi: 10.3969/j.issn.0258-2724.20170891
    [10]JING Yongzhi, HE Fei, LIAO Haijun, WANG Ying, LIU Guoqing, DONG Jinwen. Temperature Compensation of Maglev Vehicle Gap Sensor Based on RBF-NN Optimized by PSO[J]. Journal of Southwest Jiaotong University, 2018, 53(2): 367-373, 384. doi: 10.3969/j.issn.0258-2724.2018.02.020
    [11]WANG Keren, LUO Shihui, ZHANG Jiye. Design of Magnetic Levitation Controller and Static Stability Analysis[J]. Journal of Southwest Jiaotong University, 2017, 30(1): 118-126. doi: 10.3969/j.issn.0258-2724.2017.01.017
    [12]ZHOU Dajin, CUI Chenyu, MA Jiaqing, ZHAO Lifeng, ZHANG Yong, ZHAO Yong. Starting Characteristics of Linear Motor in Evacuated Tube HTS Side-Suspended Maglev System[J]. Journal of Southwest Jiaotong University, 2016, 29(4): 750-758. doi: 10.3969/j.issn.0258-2724.2016.04.021
    [13]MA Lianchuan, ZHANG Yuzhuo, SUN Yaqing, MU Jiancheng, CAO Yuan. Reliability and Delay of DSPN-Based Ground Communication System in High-Speed Maglev Vehicles[J]. Journal of Southwest Jiaotong University, 2014, 27(6): 1016-1023. doi: 10.3969/j.issn.0258-2724.2014.06.013
    [14]ZHAO Chunfa, JIA Xiaohong, ZHAI Wanming. Numerical Analysis of Ground Vibrations of Viaduct Induced by High-Speed Maglev Vehicle[J]. Journal of Southwest Jiaotong University, 2010, 23(6): 825-829. doi: 10.3969/j.issn.0258-2724.2010.06.001
    [15]BIHai-qua, LEI Bo, ZHANG Wei-hua. Numerical Calculation for Turbulent Flow around TR Maglev Train[J]. Journal of Southwest Jiaotong University, 2005, 18(1): 5-8.
    [16]ZENG You-wen, WANG Shao-hua. Research on Geometrical Curve Negotiating of Three-Truck Maglev Vehicle[J]. Journal of Southwest Jiaotong University, 2003, 16(3): 282-285.
    [17]TANGHuai-ping, GAO Fang-qing. Experimental Research on Dynamic Characteristics and Coupled Vibration of a Maglev Train System[J]. Journal of Southwest Jiaotong University, 2001, 14(2): 149-152.
    [18]HUJi-shi, PANHui-long. A Design Basis for Collector of Maglev Trains[J]. Journal of Southwest Jiaotong University, 2000, 13(2): 170-173.
    [19]Zeng Youwen, WangShaohua, ZhanKunlun. A Study on the Vehicle-Guideway Coupling Vibration and Suspension Parameters of Maglev Train[J]. Journal of Southwest Jiaotong University, 1999, 12(2): 168-173.
  • Cited by

    Periodical cited type(0)

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-122025-012025-022025-032025-042025-052025-062025-072025-082025-092025-102025-11010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 28.3 %FULLTEXT: 28.3 %META: 65.8 %META: 65.8 %PDF: 5.9 %PDF: 5.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 32.2 %其他: 32.2 %其他: 0.7 %其他: 0.7 %万宜新镇: 0.7 %万宜新镇: 0.7 %上海: 0.7 %上海: 0.7 %保定: 0.3 %保定: 0.3 %北京: 8.8 %北京: 8.8 %十堰: 0.7 %十堰: 0.7 %南京: 1.0 %南京: 1.0 %南充: 0.3 %南充: 0.3 %南昌: 0.3 %南昌: 0.3 %南阳: 0.3 %南阳: 0.3 %哈尔滨: 0.3 %哈尔滨: 0.3 %哥伦布: 0.7 %哥伦布: 0.7 %嘉兴: 0.3 %嘉兴: 0.3 %天津: 1.3 %天津: 1.3 %宣城: 1.0 %宣城: 1.0 %山景城: 1.0 %山景城: 1.0 %广元: 0.3 %广元: 0.3 %广州: 1.3 %广州: 1.3 %张家口: 1.6 %张家口: 1.6 %成都: 0.3 %成都: 0.3 %扬州: 0.7 %扬州: 0.7 %杭州: 0.3 %杭州: 0.3 %松原: 0.3 %松原: 0.3 %武汉: 0.7 %武汉: 0.7 %池州: 0.3 %池州: 0.3 %沈阳: 0.7 %沈阳: 0.7 %洛阳: 0.3 %洛阳: 0.3 %淄博: 0.7 %淄博: 0.7 %深圳: 0.7 %深圳: 0.7 %温州: 0.3 %温州: 0.3 %漯河: 2.0 %漯河: 2.0 %玉溪: 0.3 %玉溪: 0.3 %石家庄: 9.1 %石家庄: 9.1 %芒廷维尤: 9.1 %芒廷维尤: 9.1 %芝加哥: 0.3 %芝加哥: 0.3 %西宁: 12.1 %西宁: 12.1 %西安: 0.3 %西安: 0.3 %诺沃克: 1.0 %诺沃克: 1.0 %赤峰: 0.3 %赤峰: 0.3 %运城: 0.3 %运城: 0.3 %遵义: 0.3 %遵义: 0.3 %邯郸: 0.7 %邯郸: 0.7 %郑州: 1.3 %郑州: 1.3 %重庆: 0.3 %重庆: 0.3 %镇江: 0.3 %镇江: 0.3 %长沙: 0.3 %长沙: 0.3 %雷德蒙德: 2.9 %雷德蒙德: 2.9 %其他其他万宜新镇上海保定北京十堰南京南充南昌南阳哈尔滨哥伦布嘉兴天津宣城山景城广元广州张家口成都扬州杭州松原武汉池州沈阳洛阳淄博深圳温州漯河玉溪石家庄芒廷维尤芝加哥西宁西安诺沃克赤峰运城遵义邯郸郑州重庆镇江长沙雷德蒙德

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(5)

    Article views(799) PDF downloads(176) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return