• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
DONG Yahong, CAO Shuqian. Analysis of Generation and Evolution Characteristics of Wheel High-Order Polygonal Wear[J]. Journal of Southwest Jiaotong University, 2023, 58(3): 665-676. doi: 10.3969/j.issn.0258-2724.20210989
Citation: DONG Yahong, CAO Shuqian. Analysis of Generation and Evolution Characteristics of Wheel High-Order Polygonal Wear[J]. Journal of Southwest Jiaotong University, 2023, 58(3): 665-676. doi: 10.3969/j.issn.0258-2724.20210989

Analysis of Generation and Evolution Characteristics of Wheel High-Order Polygonal Wear

doi: 10.3969/j.issn.0258-2724.20210989
  • Received Date: 30 Nov 2021
  • Rev Recd Date: 17 Feb 2022
  • Available Online: 18 Feb 2023
  • Publish Date: 05 Mar 2022
  • Aiming at the increasingly serious problem of high-order wheel polygonal wear, based on the wheel-rail system rotor dynamics model, wheel-rail contact model and wear depth model, the generation and evolution model of wheel polygonal wear is established. By analyzing the variation of speed and wheel mass eccentricity, the regularity of generation and evolution of wheel polygonal wear are revealed, and the field tracking data are verified. The influence of system parameters on polygonal wear is studied by modal analysis and sensitivity analysis. The results show that the generation and evolution of high order wheel polygonal wear follows the law of “fixed frequency and divisible”. When the fixed frequency of 580 Hz divides wheelset rotation frequency, the wheel wear will evolve into 19th order polygonal, otherwise it will tend to be uniform. This fixed frequency is mainly derived from the 2nd-order bending mode of the wheelset and has the greatest sensitivity to the axle diameter. The fixed frequency of the wheel can be changed by running at constant rotating speed and increasing the axle diameter, which can effectively suppress the polygonal wear of the wheel.

     

  • [1]
    金学松,吴越,梁树林,等. 高速列车车轮多边形磨耗、机理、影响和对策分析[J]. 机械工程学报,2020,56(16): 118-136. doi: 10.3901/JME.2020.16.118

    JIN Xuesong, WU Yue, LIANG Shulin, et al. Characteristics, mechanism, influences and countermeasures of polygonal wear of high-speed train wheels[J]. Journal of Mechanical Engineering, 2020, 56(16): 118-136. doi: 10.3901/JME.2020.16.118
    [2]
    陶功权,温泽峰,金学松. 铁道车辆车轮非圆化磨耗形成机理及控制措施研究进展[J]. 机械工程学报,2021,57(6): 106-120. doi: 10.3901/JME.2021.06.106

    TAO Gongquan, WEN Zefeng, JIN Xuesong. Advances in formation mechanism and mitigation measures of out-of-round railway vehicle wheels[J]. Journal of Mechanical Engineering, 2021, 57(6): 106-120. doi: 10.3901/JME.2021.06.106
    [3]
    TAO G Q, WEN Z F, JIN X S, et al. Polygonisation of railway wheels: a critical review[J]. Railway Engineering Science, 2020, 28(4): 317-345. doi: 10.1007/s40534-020-00222-x
    [4]
    MORYS B. Enlargement of out-of-round wheel profiles on high speed trains[J]. Journal of Sound and Vibration, 1999, 227(5): 965-978. doi: 10.1006/jsvi.1999.2055
    [5]
    MEYWERK M. Polygonalization of railway wheels[J]. Archive of Applied Mechanics, 1999, 69(2): 105-120. doi: 10.1007/s004190050208
    [6]
    JOHANSSON A, ANDERSSON C. Out-of-round railway wheels—a study of wheel polygonalization through simulation of three-dimensional wheel-rail interaction and wear[J]. Vehicle System Dynamics, 2005, 43(8): 539-559. doi: 10.1080/00423110500184649
    [7]
    WU X W, RAKHEJA S, CAI W B, et al. A study of formation of high order wheel polygonalization[J]. Wear, 2019, 424/425: 1-14. doi: 10.1016/j.wear.2019.01.099
    [8]
    CAI W B, CHI M R, WU X W, et al. Experimental and numerical analysis of the polygonal wear of high-speed trains[J]. Wear, 2019, 440/441: 203079.1-203079.12.
    [9]
    MEINKE P, MEINKE S. Polygonalization of wheel treads caused by static and dynamic imbalances[J]. Journal of Sound and Vibration, 1999, 227(5): 979-986. doi: 10.1006/jsvi.1999.2590
    [10]
    胡晓依,任海星,成棣,等. 动车组车轮多边形磨耗形成与发展过程仿真研究[J]. 中国铁道科学,2021,42(2): 107-115.

    HU Xiaoyi, REN Haixing, CHENG Di, et al. Numerical simulation on the formation and development of polygonal wear of EMU wheels[J]. China Railway Science, 2021, 42(2): 107-115.
    [11]
    宋志坤,任海星,胡晓依,等. 动车组车轮多边形磨耗发展历程模拟及车轮粗糙度的影响[J]. 铁道学报,2021,43(6): 23-28. doi: 10.3969/j.issn.1001-8360.2021.06.004

    SONG Zhikun, REN Haixing, HU Xiaoyi, et al. Research on development process simulation and influencing factors of polygonal wear of high-speed train wheels[J]. Journal of the China Railway Society, 2021, 43(6): 23-28. doi: 10.3969/j.issn.1001-8360.2021.06.004
    [12]
    ZHAO X N, CHEN G X, LV J Z, et al. Study on the mechanism for the wheel polygonal wear of high-speed trains in terms of the frictional self-excited vibration theory[J]. Wear, 2019, 426/427: 1820-1827. doi: 10.1016/j.wear.2019.01.020
    [13]
    关庆华,赵鑫,温泽峰,等. 基于Hertz接触理论的法向接触刚度计算方法[J]. 西南交通大学学报,2021,56(4): 883-888.

    GUAN Qinghua, ZHAO Xin, WEN Zefeng, et al. Calculation method of Hertz normal contact stiffness[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 883-888.
    [14]
    王玉丰,沈钢. 几种铁路轮轨蠕滑力计算方法的比较[J]. 上海铁道大学学报(理工辑),1999(10): 27-32.

    WANG Yufeng, SHEN Gang. Comparison of several calculation methods of wheel/rail creep force[J]. Journal of Shanghai Tiedao University (Science and Technology), 1999(10): 27-32.
    [15]
    张卫华,金学松,薛弼一. 单轮对试验台试验及轮轨蠕滑力计算模型的验证[J]. 铁道车辆,1997,35(5): 3-6,11.

    ZHANG Weihua, JIN Xuesong, XUE Biyi. Single wheelset test and verification of wheel-rail creep force calculation model[J]. Journal of Railway Vehicle, 1997, 35(5): 3-6,11.
    [16]
    曹树谦,陈予恕. 多跨不平衡轴系的非线性动力学建模[J]. 非线性动力学学报,2002,9(1): 26-32.

    CAO Shuqian, CHEN Yushu. Nonlinear dynamics modeling of multi-span unbalanced shafting[J]. Journal of Nonlinear Dynamics, 2002, 9(1): 26-32.
    [17]
    丁军君,杨九河,胡静涛,等. 高速列车车轮多边形磨耗演变行为[J]. 机械工程学报,2020,56(22): 184-189. doi: 10.3901/JME.2020.22.184

    DING Junjun, YANG Jiuhe, HU Jingtao, et al. Evolution of the polygonal wear of high-speed train wheels[J]. Journal of Mechanical Engineering, 2020, 56(22): 184-189. doi: 10.3901/JME.2020.22.184
    [18]
    WU Y, JIN X S, CAI W B, et al. Key factors of the initiation and development of polygonal wear in the wheels of a high-speed train[J]. Applied Sciences, 2020, 10(17): 10175880.1-10175880.22. doi: 10.3390/app10175880
    [19]
    金学松,吴越,梁树林,等. 车轮非圆化磨耗问题研究进展[J]. 西南交通大学学报,2018,53(1): 1-14. doi: 10.3969/j.issn.0258-2724.2018.01.001

    JIN Xuesong, WU Yue, LIANG Shulin, et al. Mechanisms and countermeasures of out-of-roundness wear on railway vehicle wheels[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 1-14. doi: 10.3969/j.issn.0258-2724.2018.01.001
  • Relative Articles

    [1]NI Fei, FAN Lin, XU Junqi, LIN Guobin, JIA Wantao. Global Sensitivity Analysis of Single-Point Levitation System for High-Speed Maglev Train Based on Sobol’ Method[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 812-822. doi: 10.3969/j.issn.0258-2724.20240545
    [2]SHI Yixuan, DAI Huanyun, MAO Qingzhou, SHI Huailong, WANG Qunsheng. Formation Mechanism of Metro Wheel Polygonal Based on Vehicle-Track Coupling[J]. Journal of Southwest Jiaotong University, 2024, 59(6): 1357-1367, 1388. doi: 10.3969/j.issn.0258-2724.20220785
    [3]ZHANG Bo, YANG Yunfan, LING Liang, WANG Kaiyun. Wheel−Rail Interaction and Rolling Fatigue Damage of Heavy-Haul Locomotive Subjected to Wheel Polygonal Wear[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1339-1346. doi: 10.3969/j.issn.0258-2724.20210448
    [4]WANG Peng, TAO Gongquan, YANG Xiaoxuan, XIE Chenxi, LI Wei, WEN Zefeng. Analysis of Polygonal Wear Characteristics of Chinese High-Speed Train Wheels[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1357-1365. doi: 10.3969/j.issn.0258-2724.20210777
    [5]DU Xing, TAO Gongquan, YANG Cheng, WEN Zefeng, JIN Xuesong, WU Jun. Influence of Different Rail Cants on Dynamical Characteristics of High-Speed Railway Vehicles[J]. Journal of Southwest Jiaotong University, 2022, 57(2): 286-294. doi: 10.3969/j.issn.0258-2724.20210068
    [6]WANG Junping, ZHOU Yu, SHEN Gang. Effect of Rail Hardness on Fatigue Cracks Initiation and Rail Wear[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 611-618. doi: 10.3969/j.issn.0258-2724.20190184
    [7]XU Kai, LI Fu, AN Qi, MAO Wenhui. Wheel Tread Wear Characteristics of High-Speed Electric Multi-Units[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 92-100. doi: 10.3969/j.issn.0258-2724.20190266
    [8]ZHAO Xiaonan, CHEN Guangxiong, KANG Xi, ZHU Qi, ZHANG Sheng, LÜ Jinzhou. Mechanism of Polygonal Wear on Wheels of Electric Multiple Units on Lanzhou-Xinjiang Passenger Dedicated Line[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 364-371. doi: 10.3969/j.issn.0258-2724.20190027
    [9]LI Jincheng, DING Junjun, WU Pengpeng, YANG Yang, LI Fu. Analysis of Dynamics and Wheel Wear of Low Floor Vehicle Based on Different Patterns[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 14-22. doi: 10.3969/j.issn.0258-2724.20170757
    [10]WANG Peijun, LÜ Dongxu, CHEN Peng. Complex Point Cloud Registration and Optimized Data Processing for High-Speed Railway Turnout[J]. Journal of Southwest Jiaotong University, 2018, 53(4): 806-812, 849. doi: 10.3969/j.issn.0258-2724.2018.04.019
    [11]ZHANG Weihua, LI Yan, SONG Dongli. Design Methods for Motion Stability of High-Speed Trains[J]. Journal of Southwest Jiaotong University, 2013, 26(1): 1-9. doi: 10.3969/j.issn.0258-2724.2013.01.001
    [12]LIU Liu, YAN Yunju, CHANG Xiaotong, XI Zhuyou. Structure Damage Detection Method Based on Adaptive Stochastic Resonance Technology and Response Sensitivity Method[J]. Journal of Southwest Jiaotong University, 2013, 26(5): 818-824. doi: 10.3969/j.issn.0258-2724.2013.05.006
    [13]SUN Ren-Yun, LI Zhi. Fuzzy Self-Tuning of PID Parameters for Automobile Sensotronic Braking Control[J]. Journal of Southwest Jiaotong University, 2010, 23(3): 378-383. doi: 10. 3969/ j. issn. 0258-2724.
    [14]ZHANG Jing, LI Bailin, LIU Yongjun. Decoupling Method of Multidisciplinary Design Optimization Based on Sensitivity Analysis[J]. Journal of Southwest Jiaotong University, 2007, 20(5): 563-567.
    [15]LUTao. OperationalEquation and Setting ofDifferentialProtection for Impedance-M atching Balance Transformer[J]. Journal of Southwest Jiaotong University, 2005, 18(2): 158-162.
    [16]ZHAO Ping, FENG Chun, LIBo-lin. Efficient Algorithm for Line Clipping against General Polygon[J]. Journal of Southwest Jiaotong University, 2004, 17(1): 64-68.
    [17]YANG Ming-ju, GUAN Bao-shu, WANG Min-shou. Sensitivity Analysis of the Influences of Rock Parameters on the Stability of Large-Scale Underground Chambers[J]. Journal of Southwest Jiaotong University, 2000, 13(5): 488-491.
  • Cited by

    Periodical cited type(5)

    1. 张钞奕,吴梦雪,唐德发,徐昕宇. 车轮多边形磨耗主导阶数的演变对车桥系统振动响应的影响. 科学技术与工程. 2025(04): 1658-1666 .
    2. 关庆华,王文波,张丰英,温泽峰. 陀螺效应对高速旋转轮对弯曲模态的影响. 铁道学报. 2025(03): 54-63 .
    3. 施以旋,戴焕云,毛庆洲,石怀龙,汪群生. 基于车轨耦合的地铁车轮多边形形成机理. 西南交通大学学报. 2024(06): 1357-1367+1388 . 本站查看
    4. 胡静涛,丁军君,李芾. 车轮多边形相位差对动力学性能的影响. 铁道机车车辆. 2023(02): 27-33 .
    5. 石邹亮. 兰新客运专线CRH5G型动车组车轮多边形研究. 郑州铁路职业技术学院学报. 2023(04): 1-3 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-092024-102024-112024-122025-012025-022025-032025-032025-042025-052025-062025-0701020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 21.9 %FULLTEXT: 21.9 %META: 69.6 %META: 69.6 %PDF: 8.5 %PDF: 8.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 16.0 %其他: 16.0 %Seattle: 0.1 %Seattle: 0.1 %United States: 0.3 %United States: 0.3 %[]: 0.1 %[]: 0.1 %上海: 1.5 %上海: 1.5 %东莞: 1.1 %东莞: 1.1 %临汾: 0.3 %临汾: 0.3 %乌鲁木齐: 0.1 %乌鲁木齐: 0.1 %佛山: 0.1 %佛山: 0.1 %保定: 0.2 %保定: 0.2 %兰州: 1.2 %兰州: 1.2 %北京: 6.1 %北京: 6.1 %十堰: 0.6 %十堰: 0.6 %南京: 0.6 %南京: 0.6 %南昌: 0.6 %南昌: 0.6 %南通: 0.2 %南通: 0.2 %台州: 0.3 %台州: 0.3 %合肥: 0.4 %合肥: 0.4 %哈尔滨: 0.2 %哈尔滨: 0.2 %哥伦布: 0.1 %哥伦布: 0.1 %唐山: 0.4 %唐山: 0.4 %嘉兴: 0.2 %嘉兴: 0.2 %嘉峪关: 0.1 %嘉峪关: 0.1 %夏延: 0.1 %夏延: 0.1 %大庆: 0.1 %大庆: 0.1 %大连: 0.1 %大连: 0.1 %天津: 1.3 %天津: 1.3 %太原: 0.3 %太原: 0.3 %安康: 0.1 %安康: 0.1 %宜春: 0.1 %宜春: 0.1 %宣城: 0.7 %宣城: 0.7 %常州: 0.4 %常州: 0.4 %广州: 0.9 %广州: 0.9 %张家口: 4.2 %张家口: 4.2 %忻州: 0.1 %忻州: 0.1 %惠州: 0.2 %惠州: 0.2 %成都: 1.6 %成都: 1.6 %扬州: 1.2 %扬州: 1.2 %揭阳: 0.1 %揭阳: 0.1 %攀枝花: 0.4 %攀枝花: 0.4 %新乡: 0.2 %新乡: 0.2 %昆明: 0.2 %昆明: 0.2 %朝阳: 0.2 %朝阳: 0.2 %杭州: 0.5 %杭州: 0.5 %枣庄: 0.1 %枣庄: 0.1 %武汉: 0.4 %武汉: 0.4 %江门: 0.1 %江门: 0.1 %池州: 0.2 %池州: 0.2 %沈阳: 0.4 %沈阳: 0.4 %洛阳: 0.3 %洛阳: 0.3 %济南: 0.8 %济南: 0.8 %淄博: 0.1 %淄博: 0.1 %深圳: 0.7 %深圳: 0.7 %温州: 0.8 %温州: 0.8 %湖州: 0.2 %湖州: 0.2 %漯河: 2.4 %漯河: 2.4 %烟台: 0.1 %烟台: 0.1 %石家庄: 5.0 %石家庄: 5.0 %福州: 0.2 %福州: 0.2 %红磡: 0.1 %红磡: 0.1 %纽约: 0.1 %纽约: 0.1 %绵阳: 0.2 %绵阳: 0.2 %芒廷维尤: 11.2 %芒廷维尤: 11.2 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.2 %苏州: 0.2 %衡阳: 0.2 %衡阳: 0.2 %衢州: 0.2 %衢州: 0.2 %西双版纳: 0.4 %西双版纳: 0.4 %西宁: 25.6 %西宁: 25.6 %西安: 0.4 %西安: 0.4 %诺沃克: 0.2 %诺沃克: 0.2 %贵阳: 0.3 %贵阳: 0.3 %运城: 0.6 %运城: 0.6 %邯郸: 0.2 %邯郸: 0.2 %郑州: 0.4 %郑州: 0.4 %重庆: 0.7 %重庆: 0.7 %金华: 0.2 %金华: 0.2 %长春: 0.2 %长春: 0.2 %长沙: 1.7 %长沙: 1.7 %阿姆斯特丹: 0.1 %阿姆斯特丹: 0.1 %雷德蒙德: 0.2 %雷德蒙德: 0.2 %青岛: 1.1 %青岛: 1.1 %马鞍山: 0.1 %马鞍山: 0.1 %黔南: 0.3 %黔南: 0.3 %龙岩: 0.1 %龙岩: 0.1 %其他SeattleUnited States[]上海东莞临汾乌鲁木齐佛山保定兰州北京十堰南京南昌南通台州合肥哈尔滨哥伦布唐山嘉兴嘉峪关夏延大庆大连天津太原安康宜春宣城常州广州张家口忻州惠州成都扬州揭阳攀枝花新乡昆明朝阳杭州枣庄武汉江门池州沈阳洛阳济南淄博深圳温州湖州漯河烟台石家庄福州红磡纽约绵阳芒廷维尤芝加哥苏州衡阳衢州西双版纳西宁西安诺沃克贵阳运城邯郸郑州重庆金华长春长沙阿姆斯特丹雷德蒙德青岛马鞍山黔南龙岩

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(2)

    Article views(779) PDF downloads(94) Cited by(9)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return