• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 31 Issue 4
Jul.  2018
Turn off MathJax
Article Contents
WANG Peijun, LÜ Dongxu, CHEN Peng. Complex Point Cloud Registration and Optimized Data Processing for High-Speed Railway Turnout[J]. Journal of Southwest Jiaotong University, 2018, 53(4): 806-812, 849. doi: 10.3969/j.issn.0258-2724.2018.04.019
Citation: WANG Peijun, LÜ Dongxu, CHEN Peng. Complex Point Cloud Registration and Optimized Data Processing for High-Speed Railway Turnout[J]. Journal of Southwest Jiaotong University, 2018, 53(4): 806-812, 849. doi: 10.3969/j.issn.0258-2724.2018.04.019

Complex Point Cloud Registration and Optimized Data Processing for High-Speed Railway Turnout

doi: 10.3969/j.issn.0258-2724.2018.04.019
  • Received Date: 11 May 2017
  • Publish Date: 01 Aug 2018
  • To enhance the inspection efficiency of high-speed switch rail wear, a complex registration based on a distance encoder is proposed, considering the inspection standards and the geometric characteristics of high-speed switch rail. The distance information was combined with the point cloud registration to improve automatic inspection. Additionally, the OpenCL (open computing language) heterogeneous acceleration model was introduced to achieve parallel data processing with higher speed during computation of the point feature histograms (PFH). In the on-site inspection of high-speed switch rail wear, the system function was verified on the structured light inspection platform, and the total inspection performance was increased by up to 70% by the optimized point cloud registration and data processing methods.

     

  • loading
  • 王平, 陈嵘, 徐井芒, 等.高速铁路道岔系统理论与工程实践研究综述[J].西南交通大学学报, 2016, 51(2):357-372. doi: 10.3969/j.issn.0258-2724.2016.02.015

    WANG Ping, CHEN Rong, XU Jingmang, et al. Theories and engineering practices of high-speed railway turnout system:survey and review[J]. Journal of Southwest Jiaotong University, 2016, 51(2):357-372. doi: 10.3969/j.issn.0258-2724.2016.02.015
    NIETO M, CORTS A, BARANDIARAN J, et al. Single camera railways track profile inspection using an slice sampling-based particle filter. computer vision, imaging and computer graphics. theory and application[M]. Berlin:Springer, 2012:326-339.
    陈亮辉.采用结构光方法的三维轮廓测量[D].大连: 大连理工大学, 2006. http://cdmd.cnki.com.cn/Article/CDMD-10141-2006021219.htm
    ZHOU Y, ZHANG J, JIANG J, et al. Study and implementation on rail profile alignment algorithm based on 3D scanning data[C]//15th COTA international conference of transportation professionals. Reston: American Society of Civil Engineers, 2015: 1942-1951.
    王健, 胥燕军, 汪力, 等.机器视觉在钢轨磨耗检测中的应用研究[J].铁道标准设计, 2014, 58(9):36-39. http://d.old.wanfangdata.com.cn/Periodical/tdbzsj201409009

    WANG Jian, XU Yanjun, WANG Li, et al. The application research of machine vision in rail wear detection[J]. Railway Standard Design, 2014, 58(9):36-39. http://d.old.wanfangdata.com.cn/Periodical/tdbzsj201409009
    高伟杰.基于机器视觉的钢轨轮廓检测系统的研究[D].北京: 北京交通大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10004-1012355762.htm
    张宇宁, 谢琦.一种基于机器视觉的铁路道岔检测方法[J].计算机应用与软件, 2015(1):225-228. doi: 10.3969/j.issn.1000-386x.2015.01.057

    ZHANG Yuning, XIE Qi. A railway turnout detection method based on machine vision[J]. Computer Applications and Software, 2015(1):225-228. doi: 10.3969/j.issn.1000-386x.2015.01.057
    张广军.视觉测量[M].北京:科学出版社, 2008:175-205.
    中华人民共和国铁道部.铁运[2006] 177号部令铁路线路维修规则[S].中国铁道出版社, 2006.
    达飞鹏, 盖绍彦.光栅投影三维精密测量[M].北京:科学出版社, 2011:215-229.
    袁宝军, 邹小魁.铁路道岔尖轨轨高的测量基准研究[J].铁道标准设计, 2013, 57(4):5-8. http://d.old.wanfangdata.com.cn/Periodical/tdbzsj201304002

    YUAN Baojun, ZOU Xiaokui. Study on measuring basis for height of railway turnout switch rail[J]. Railway Standard Design, 2013, 57(4):5-8. http://d.old.wanfangdata.com.cn/Periodical/tdbzsj201304002
    朱德海.点云库PCL学习教程[M].北京:北京航空航天大学出版社, 2012:249-300.
    RUSU R B. Semantic 3D object maps for everyday manipulation in human living environments[J]. KüstlicheIntelligenz, 2010, 24(4):345-348. doi: 10.1007/s13218-010-0059-6
    WAHL E, HILLENBRAND U, HIRZINGER G. Surflet-pair-relation histograms: a statistical 3D-shape representation for rapid classification[C]//International Conference on 3-D Digital Imaging and Modeling, 2003.[S.l.]: IEEE, 2003: 474-481.
    RUSUR B, BLODOW N, BEETZ M. Fast point feature histograms (FPFH) for 3D registration[C]//IEEE International Conference onRobotics and Automation.[S.l.]: IEEE, 2009: 3212-3217.
    MUNSHI A, GASTER B, MATTSON T G. OpenCL programming guide[M].[S.l.]: Science Press, 2012: 247-281.
    SCARPINO M. OpenCL in action:how to accelerate graphics and computation[M]. Shelter Island:Manning Publication, 2012:16-94.
    Advanced Micro Devices Inc. AMD OpenCL programming user guide[DB/OL].[2016-01-22]. http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_OpenCL_Programming_User_Guide2.pdf.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(4)

    Article views(458) PDF downloads(61) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return