• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
ZHAO Xiaonan, CHEN Guangxiong, KANG Xi, ZHU Qi, ZHANG Sheng, LÜ Jinzhou. Mechanism of Polygonal Wear on Wheels of Electric Multiple Units on Lanzhou-Xinjiang Passenger Dedicated Line[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 364-371. doi: 10.3969/j.issn.0258-2724.20190027
Citation: ZHAO Xiaonan, CHEN Guangxiong, KANG Xi, ZHU Qi, ZHANG Sheng, LÜ Jinzhou. Mechanism of Polygonal Wear on Wheels of Electric Multiple Units on Lanzhou-Xinjiang Passenger Dedicated Line[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 364-371. doi: 10.3969/j.issn.0258-2724.20190027

Mechanism of Polygonal Wear on Wheels of Electric Multiple Units on Lanzhou-Xinjiang Passenger Dedicated Line

doi: 10.3969/j.issn.0258-2724.20190027
  • Received Date: 17 Jan 2019
  • Rev Recd Date: 28 May 2019
  • Available Online: 13 Jun 2019
  • Publish Date: 01 Apr 2020
  • Wheels of the electric multiple units (EMU) running on the Lanzhou-Xinjiang Passenger Dedicated Line have undergone severe polygonal wear because of the harsh environment. This wear increases the contact force between wheels and rails, affects the comfort of passengers, and even endangers train running. To deal with it, the models of the coupled friction and self-excited vibration for a wheelset-track-slab system are established on the basis of the wheel polygonal wear rules obtained by the long-term tracking and the frictional self-excited vibration principles. Then, the cause and development pattern of the wheel polygonal wear are studied by using the complex eigenvalue method. The results show that the frictional self-excited vibration caused by the saturated creep force between wheels and rails can easily result in the 15th−16th order polygonal wear on a straight line. Meanwhile, when the braking system is coupled with the wheelset-track system, at the unstable vibration frequencies of the power wheelset and un-power wheelset, the 23th−24th and 22th−23th order polygonal wear emerges. Finally, the increasing adhesion coefficient between the wheels and rails may account for the fact that the wheel polygonal wear develops faster in winter and spring than in summer.

     

  • MORYS B. Enlargement of out-of-round wheel profiles on high speed trains[J]. Journal of Sound & Vibration, 1999, 227(5): 965-978.
    BROMMUNDT E. A simple mechanism for the polygonalization of railway wheels by wear[J]. Mechanics Research Communications, 2012, 24(4): 435-442.
    NIELSEN J. Out-of-round railway wheels[M/OL]//LEWIS R, OLOFSSON U. Wheel-rail interface handbook. [S.l.]: Woodhead Publishing, 2009: 245-279[2018-10-12]. https://doi.org/10.1533/9781845696788.1.245.
    NIELSEN J C, JOHANSSON A. Out-of-round railway wheels-a literature survey[J]. Proceedings of the Institution of Mechanical Engineers,Part F:Journal of Rail and Rapid Transit, 2000, 214(2): 79-91. doi: 10.1243/0954409001531351
    NIELSEN J C O, JOHANSSON A. Out-of-round railway wheels-a literature survey[J]. Proceedings of the Institution of Mechanical Engineers Part F Journal of Rail & Rapid Transit, 2000, 214(2): 79-91.
    KALOUSEK J, JOHNSON K L. An investigation of short pitch wheel and rail corrugations on the Vancouver mass transit system[J]. Proceedings of the Institution of Mechanical Engineers,Part F:Journal of Rail and Rapid Transit, 1992, 206(2): 127-135. doi: 10.1243/PIME_PROC_1992_206_226_02
    罗仁,曾京,邬平波,等. 高速列车车轮不圆顺磨耗仿真及分析[J]. 铁道学报,2010,32(5): 30-35.

    LUO Ren, ZENG Jing, WU Pingbo, et al. Simulation and analysis of wheel out-of-roundness wear of high-speed train[J]. Journal of the China Railway Society, 2010, 32(5): 30-35.
    陈光雄,金学松,邬平波,等. 车轮多边形磨耗机理的有限元研究[J]. 铁道学报,2011,33(1): 14-18. doi: 10.3969/j.issn.1001-8360.2011.01.003

    CHEN Guangxiong, JIN Xuesong, WU Pingbo, et al. Finite element study on the generation mechanism of polygonal wear of railway wheels[J]. Journal of the China Railway Society, 2011, 33(1): 14-18. doi: 10.3969/j.issn.1001-8360.2011.01.003
    陈光雄,崔晓璐,王科. 高速列车车轮踏面非圆磨耗机理[J]. 西南交通大学学报,2016,51(2): 244-250. doi: 10.3969/j.issn.0258-2724.2016.02.004

    CHEN Guangxiong, CUI Xiaolu, WANG Ke. Generation mechanism for plolygonalization of wheel treads of high-speed trains[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 244-250. doi: 10.3969/j.issn.0258-2724.2016.02.004
    李伟,李言义,张雄飞,等. 地铁车辆车轮多边形的机理分析[J]. 机械工程学报,2013,49(18): 17-22.

    LI Wei, LI Yanyi, ZHANG Xiongfei, et al. Mechanism of the polygonal wear of metro train wheels[J]. Journal of Mechanical Engineering, 2013, 49(18): 17-22.
    吴越,韩健,刘佳,等. 高速列车车轮多边形磨耗对轮轨力和转向架振动行为的影响[J]. 机械工程学报,2018,54(4): 37-46.

    WU Yue, HAN Jian, LIU Jia, et al. Effect of high-speed train polygonal wheels on wheel/rail contact force and bogie vibration[J]. Journal of Mechanical Engineering, 2018, 54(4): 37-46.
    彭来先. 200 km/h动车组转向架振动噪声随运营里程变化规律[D]. 成都: 西南交通大学, 2018.
    王争鸣. 兰新高铁穿越大风区线路选线及防风措施设计[J]. 铁道工程学报,2015,32(1): 1-6. doi: 10.3969/j.issn.1006-2106.2015.01.001

    WANG Zhengming. Design of route selection and windproof measures for strong wind-hit section of second double line of Lanzhou-Urumqi railway[J]. Journal of Railway Engineering Society, 2015, 32(1): 1-6. doi: 10.3969/j.issn.1006-2106.2015.01.001
    尹鹏飞. 兰新铁路客运专线动车组运用维修研究[D]. 北京: 中国铁道科学研究院, 2015.
    李凌翔. 兰新高铁双块式无砟轨道有限元仿真分析研究[D]. 兰州: 兰州交通大学, 2016.
    崔晓璐,陈光雄,杨宏光. 轮对结构和扣件刚度对钢轨波磨的影响[J]. 西南交通大学学报,2017,52(1): 112-117. doi: 10.3969/j.issn.0258-2724.2017.01.016

    CUI Xiaolu, CHEN Guangxiong, YANG Hongguang. Influence of wheelset structure and fastener stiffness on rail corrugation[J]. Journal of Southwest Jiaotong University, 2017, 52(1): 112-117. doi: 10.3969/j.issn.0258-2724.2017.01.016
    陈光雄,钱韦吉,莫继良,等. 轮轨摩擦自激振动引起小半径曲线钢轨波磨的瞬态动力学[J]. 机械工程学报,2014,50(9): 71-76.

    CHEN Guangxiong, QIAN Weiji, MO Jiliang, et al. A transient dynamics study on wear-type rail corrugation on a tight curve due to the friction-induced self-excited vibration of a wheelset-track system[J]. Journal of Mechanical Engineering, 2014, 50(9): 71-76.
    YUAN Y. An eigenvalue analysis approach to brake squeal problem[C]//Proceedings of the 29th ISATA Conference Automotive Braking Systems. Florence: [s. n.], 1996: 337-344.
    赵晓男,陈光雄,崔晓璐,等. 高速列车车轮多边形磨耗的形成机理及影响因素探究[J]. 表面技术,2018,47(8): 8-13.

    ZHAO Xiaonan, CHEN Guangxiong, CUI Xiaolu, et al. Study on the formation mechanism and influencing factors of the polygonal wear of high-speed train wheels[J]. Surface Technology, 2018, 47(8): 8-13.
    黄问盈,杨宁清,黄民. 列车制动力的二次换算计算[J]. 中国铁道科学,1999(2): 69-80.

    HUANG Wenying, YANG Ningqing, HUANG Min. Second conversion calculation for train braking force[J]. China Academy of Railway Sciences, 1999(2): 69-80.
    KUMAR S, KRISHNAMOORTHY P K, RAO D P. Wheel-rail wear and adhesion with and without sand for a North American locomotive[J]. Journal of Engineering for Industry, 1986, 108(2): 141-147. doi: 10.1115/1.3187049
  • Relative Articles

    [1]FENG Xiaohang, CHEN Guangxiong, MEI Guiming, DONG Bingjie, ZHAO Pengpeng, LI Xianhang. Frictional Self-Excited Vibration of a Metro Pantograph-Catenary System[J]. Journal of Southwest Jiaotong University, 2025, 60(2): 418-424. doi: 10.3969/j.issn.0258-2724.20220873
    [2]ZHOU Ning, ZHI Xingshuai, ZHANG Jing, ZHENG Wei, LUO Chaoji, ZHANG Weihua. Friction and Wear Performance of Pantograph-Catenary System in Electrified Railways: State of the Art[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 990-1005, 1022. doi: 10.3969/j.issn.0258-2724.20220053
    [3]SHI Yixuan, DAI Huanyun, MAO Qingzhou, SHI Huailong, WANG Qunsheng. Formation Mechanism of Metro Wheel Polygonal Based on Vehicle-Track Coupling[J]. Journal of Southwest Jiaotong University, 2024, 59(6): 1357-1367, 1388. doi: 10.3969/j.issn.0258-2724.20220785
    [4]CUI Xiaolu, BAO Pengyu, CHEN Jiaxin, YANG Zongchao. Rail Friction Self-Excited Vibration in Braking Section of High-Speed Railway[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 141-149. doi: 10.3969/j.issn.0258-2724.20210173
    [5]ZHANG Bo, YANG Yunfan, LING Liang, WANG Kaiyun. Wheel−Rail Interaction and Rolling Fatigue Damage of Heavy-Haul Locomotive Subjected to Wheel Polygonal Wear[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1339-1346. doi: 10.3969/j.issn.0258-2724.20210448
    [6]WANG Peng, TAO Gongquan, YANG Xiaoxuan, XIE Chenxi, LI Wei, WEN Zefeng. Analysis of Polygonal Wear Characteristics of Chinese High-Speed Train Wheels[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1357-1365. doi: 10.3969/j.issn.0258-2724.20210777
    [7]DONG Yahong, CAO Shuqian. Analysis of Generation and Evolution Characteristics of Wheel High-Order Polygonal Wear[J]. Journal of Southwest Jiaotong University, 2023, 58(3): 665-676. doi: 10.3969/j.issn.0258-2724.20210989
    [8]WANG Qilong, WANG Guohai, CHEN Xiangrong, YU Jingzhe. Thermo-Electric Coupling Simulation for 10 kV AC XLPE Cable in DC Operation[J]. Journal of Southwest Jiaotong University, 2022, 57(1): 46-54. doi: 10.3969/j.issn.0258-2724.20200111
    [9]WANG Dongwei, WU Xiao, XIANG Zaiyu, MO Jiliang. Investigation on Thermo-Mechanical Coupling Characteristics of Disc Brake System of High-Speed Train[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 428-436. doi: 10.3969/j.issn.0258-2724.20190879
    [10]CHEN Rong, WANG Xuetong, CHEN Jiayin, DING Ye, XU Jingmang. Influence of Wheelset Installation Deflection Angle on Dynamic Characteristics of High-Speed Vehicles Crossing Switch[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 872-882. doi: 10.3969/j.issn.0258-2724.20190535
    [11]KANG Xi, CHEN Guangxiong, LÜ Jinzhou, ZHAO Xiaonan, WU Bowen, ZHU Qi. Similarity of Small-Scale Wheelset-Track Model for Investigation of Rail Corrugation[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1320-1327. doi: 10.3969/j.issn.0258-2724.20180898
    [12]ZHANG Mingyuan, LU Liantao, ZENG Dongfang, CHEN Gang, ZHANG Jiwang. Effect of Rolling Direction Reversal on Friction and Wear Behavior of Wheel Steel[J]. Journal of Southwest Jiaotong University, 2017, 30(1): 106-111,126. doi: 10.3969/j.issn.0258-2724.2017.01.015
    [13]CHEN Guangxiong, CUI Xiaolu, WANG Ke. Generation Mechanism for Plolygonalization of Wheel Treads of High-Speed Trains[J]. Journal of Southwest Jiaotong University, 2016, 29(2): 244-250. doi: 10.3969/j.issn.0258-2724.2016.02.004
    [14]WANG Wenjian, WANG Hong, LIU Qiyue. Effect of Wheel Material on Rolling Friction and Wear Behaviors of Wheel/Rail Rollers[J]. Journal of Southwest Jiaotong University, 2013, 26(5): 909-914. doi: 10.3969/j.issn.0258-2724.2013.05.020
    [15]ZHAO Chunfa, JIA Xiaohong, ZHAI Wanming. Numerical Analysis of Ground Vibrations of Viaduct Induced by High-Speed Maglev Vehicle[J]. Journal of Southwest Jiaotong University, 2010, 23(6): 825-829. doi: 10.3969/j.issn.0258-2724.2010.06.001
    [16]TAN Changjian, ZHU Bing. Coupled Vibration Analysis of Bridge Deck and Cable of Long-Span Cable-Stayed Bridge[J]. Journal of Southwest Jiaotong University, 2007, 20(6): 726-731.
    [17]LIU Qi-lie, ZHANG Cui-fang, YI Fan. Controlling Chaotic Motions of Nonlinear System Using B-Spline Neural Network[J]. Journal of Southwest Jiaotong University, 2005, 18(1): 18-21.
    [18]ZHAO Ping, FENG Chun, LIBo-lin. Efficient Algorithm for Line Clipping against General Polygon[J]. Journal of Southwest Jiaotong University, 2004, 17(1): 64-68.
    [19]GAO Pin-xian, WU Chuan-hui, GAO Xiang-ling. Analysis and Application of Dynamic Spectrum of Friction-Induced Noise[J]. Journal of Southwest Jiaotong University, 2004, 17(6): 788-791.
  • Cited by

    Periodical cited type(10)

    1. 唐德发,吴梦雪,徐昕宇,张钞奕,李永乐. 车轮多边形磨耗对车桥耦合振动响应的影响. 铁道标准设计. 2024(01): 108-116 .
    2. 吴丹,丁旺才. 轨道交通列车车轮多边形磨耗机理及其影响综述. 交通运输工程学报. 2024(02): 85-101 .
    3. 石锦,陈逊,伍安旭,李佳豪,冯畅. 地铁踏面清扫装置运用效果试验研究. 轨道交通装备与技术. 2024(S1): 126-128 .
    4. 施以旋,戴焕云,毛庆洲,石怀龙,汪群生. 基于车轨耦合的地铁车轮多边形形成机理. 西南交通大学学报. 2024(06): 1357-1367+1388 . 本站查看
    5. 崔晓璐,包鹏羽,陈佳欣,杨宗超. 高速铁路制动区间钢轨摩擦自激振动研究. 西南交通大学学报. 2023(01): 141-149 . 本站查看
    6. 吴波文,刘婷,王晓翠,潘家保,张荣芸. 基于有限元的高速列车车轮多边形磨耗成因分析. 摩擦学学报. 2022(01): 131-141 .
    7. 勾红叶,刘畅,班新林,孟鑫,蒲黔辉. 高速铁路桥梁-轨道体系检测监测与行车安全研究进展. 交通运输工程学报. 2022(01): 1-23 .
    8. 吴丹,丁旺才,郭富强,马琳. 车轮谐波磨耗对轮轨蠕滑特性的影响分析. 振动与冲击. 2021(04): 1-9 .
    9. 陶功权,温泽峰,金学松. 铁道车辆车轮非圆化磨耗形成机理及控制措施研究进展. 机械工程学报. 2021(06): 106-120 .
    10. 朱海燕,王超文,邬平波,曾京,肖乾. 基于小滚轮高频激励的高速列车齿轮箱箱体振动试验. 交通运输工程学报. 2020(05): 135-150 .

    Other cited types(13)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-062025-0705101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 44.3 %FULLTEXT: 44.3 %META: 52.6 %META: 52.6 %PDF: 3.1 %PDF: 3.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 2.2 %其他: 2.2 %其他: 0.5 %其他: 0.5 %China: 0.4 %China: 0.4 %上海: 1.7 %上海: 1.7 %临汾: 0.2 %临汾: 0.2 %兰州: 0.4 %兰州: 0.4 %北京: 19.1 %北京: 19.1 %南京: 0.2 %南京: 0.2 %南昌: 1.1 %南昌: 1.1 %南阳: 0.5 %南阳: 0.5 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.1 %哥伦布: 0.1 %唐山: 0.2 %唐山: 0.2 %宣城: 0.5 %宣城: 0.5 %张家口: 1.9 %张家口: 1.9 %成都: 1.7 %成都: 1.7 %扬州: 0.2 %扬州: 0.2 %杭州: 2.1 %杭州: 2.1 %株洲: 0.4 %株洲: 0.4 %武汉: 0.5 %武汉: 0.5 %池州: 0.9 %池州: 0.9 %沈阳: 0.4 %沈阳: 0.4 %济南: 0.2 %济南: 0.2 %湛江: 0.4 %湛江: 0.4 %漯河: 0.1 %漯河: 0.1 %石家庄: 2.2 %石家庄: 2.2 %福州: 0.2 %福州: 0.2 %绵阳: 0.7 %绵阳: 0.7 %芒廷维尤: 3.5 %芒廷维尤: 3.5 %芜湖: 0.2 %芜湖: 0.2 %芝加哥: 0.1 %芝加哥: 0.1 %苏州: 0.2 %苏州: 0.2 %西宁: 53.2 %西宁: 53.2 %西安: 0.5 %西安: 0.5 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.6 %运城: 0.6 %郑州: 0.1 %郑州: 0.1 %重庆: 0.2 %重庆: 0.2 %长沙: 0.9 %长沙: 0.9 %青岛: 0.2 %青岛: 0.2 %齐齐哈尔: 0.4 %齐齐哈尔: 0.4 %其他其他China上海临汾兰州北京南京南昌南阳哈尔滨哥伦布唐山宣城张家口成都扬州杭州株洲武汉池州沈阳济南湛江漯河石家庄福州绵阳芒廷维尤芜湖芝加哥苏州西宁西安贵阳运城郑州重庆长沙青岛齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article views(819) PDF downloads(29) Cited by(23)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return