Citation: | PAN Lei, GUO Yushi, LI Hengchao, WANG Weiye, LI Zechen, MA Tianyu. SAR Image Generation Method via PCGAN for Ship Detection[J]. Journal of Southwest Jiaotong University, 2024, 59(3): 547-555. doi: 10.3969/j.issn.0258-2724.20210630 |
Most of existing synthetic aperture radar (SAR) image generation methods fail to generate SAR images and their detection labels simultaneously. A position-based conditional generative adversarial network (PCGAN) is constructed for SAR ship image generation and target detection. Firstly, ship position information is used as a constraint and a detection label to restrict its position in the generated image. Then, the Wasserstein distance is further introduced to stabilize the training process of PCGAN. Finally, the generated SAR images and their corresponding labels are applied for the end-to-end training of YOLOv3, so as to realize the cooperative learning of data enhancement and ship detection, and further obtain the diversified ship data more coupled with the practical application of ship detection. Experimental results conducted on HRSID dataset illustrate that PCGAN can generate clear and robust SAR ship data, and the accuracy of ship detection can be improved by up to 1.01%, thus verifying the proposed method.
[1] |
REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. (2018-04-08)[2020-10-13]. https://arxiv.org/abs/1804.02767.
|
[2] |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[EB/OL]. (2015-12-08)[2020-10-13]. https://arxiv.org/abs/1512.02325.
|
[3] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
|
[4] |
DING J, CHEN B, LIU H W, et al. Convolutional neural network with data augmentation for SAR target recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(3): 364-368.
|
[5] |
朱柳. 高分辨SAR场景分布的重建方法研究[D]. 成都: 电子科技大学,2013.
|
[6] |
刘鹏程. 基于特征调制的SAR欺骗干扰方法研究[D]. 成都: 电子科技大学,2013.
|
[7] |
BALZ T, STILLA U. Hybrid GPU-based single- and double-bounce SAR simulation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(10): 3519-3529.
|
[8] |
HAMMER H, SCHULZ K. Coherent simulation of SAR images[C]//Proceedings of SPIE—The International Society for Optical Engineering 7477. Berlin: [s.n.], 2009: 406-414.
|
[9] |
VAN DEN OORD A, KALCHBRENNER N, KAVUKCUOGLU K. Pixel recurrent neural networks[C]//Proceedings of the 33rd International Conference on International Conference on Machine Learning. New York: [s.n.],2016: 1747-1756.
|
[10] |
KINGMA D P, WELLING M. Auto-encoding variational bayes[EB/OL]. (2013-12-20)[2020-10-13]. https://arxiv.org/abs/1312.6114.
|
[11] |
GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal:MIT Press, 2014: 2672-2680.
|
[12] |
RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[EB/OL]. (2015-11-19)[2020-10-13]. https://arxiv.org/abs/1511.06434.
|
[13] |
KARRAS T, AILA T, LAINE S, et al. Progressive growing of GANs for improved quality, stability, and variation[EB/OL]. (2017-10-27)[2020-10-13]. https://arxiv.org/abs/1710.10196.
|
[14] |
MIRZA M, OSINDERO S. Conditional generative adversarial nets[EB/OL]. (2014-11-06)[2020-10-13]. https://arxiv.org/abs/1411.1784.
|
[15] |
ARJOVSKY M, BOTTOU L. Towards principled methods for training generative adversarial networks[EB/OL]. (2017-01-17)[2020-10-13]. https://arxiv.org/abs/1701.04862.
|
[16] |
ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein GAN[EB/OL]. (2017-01-26)[2020-10-13]. https://arxiv.org/abs/1701.07875.
|
[17] |
徐永士,贲可荣,王天雨,等. DCGAN模型改进与SAR图像生成研究[J]. 计算机科学,2020,47(12): 93-99. doi: 10.11896/jsjkx.200700109
XU Yongshi, BEN Kerong, WANG Tianyu, et al. Study on DCGAN model improvement and SAR images generation[J]. Computer Science, 2020, 47(12): 93-99. doi: 10.11896/jsjkx.200700109
|
[18] |
HUANG H H, ZHANG F, ZHOU Y S, et al. High resolution SAR image synthesis with hierarchical generative adversarial networks[C]//IEEE International Geoscience and Remote Sensing Symposium. Yokohama: IEEE, 2019: 2782-2785.
|
[19] |
GUO J Y, LEI B, DING C B, et al. Synthetic aperture radar image synthesis by using generative adversarial nets[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(7): 1111-1115.
|
[20] |
LU Q L, JIANG H Y, LI G J, et al. Data augmentation method of SAR image dataset based on Wasserstein generative adversarial networks[C]//2019 International Conference on Electronic Engineering and Informatics (EEI). Nanjing: IEEE, 2019: 488-490.
|
[21] |
GAO F, YANG Y, WANG J, et al. A deep convolutional generative adversarial networks (DCGANs)-based semi-supervised method for object recognition in synthetic aperture radar (SAR) images[J]. Remote Sensing, 2018, 10(6): 846.1-846.21.
|
[22] |
WEI S J, ZENG X F, QU Q Z, et al. HRSID: a high-resolution SAR images dataset for ship detection and instance segmentation[J]. IEEE Access, 2020, 8: 120234-120254.
|
[23] |
HEUSEL M, RAMSAUER H, UNTERTHINER T, et al. GANs trained by a two time-scale update rule converge to a local Nash equilibrium[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. California: ACM, 2017: 6629-6640.
|