Citation: | YUE Chuan, WANG Lide, YAN Haipeng. Attack-Sample Generation Method for Train Communication Network Under Few-Shot Condition[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1277-1285. doi: 10.3969/j.issn.0258-2724.20210557 |
Deep learning-based intrusion detection for the train communication network requires sufficient training samples, but there are few available attack samples in the actual scenario. Generative adversarial network (GAN) thus operates to generate attack samples. Also, the sampling strategy, constraint condition and loss function of GAN are improved; and a generator based on convolutional neural network and a discriminator are designed. Then an improved GAN-based method is proposed for attack sample generation. Sample generation experiments and intrusion detection experiments are conducted to test the proposed method, indicating that it can generate effective attack samples. When applying these generated samples in the training process of the intrusion detection model, the average
[1] |
简捷. 基于以太网的列车通信网络多业务调度优化策略研究[D]. 北京: 北京交通大学, 2020.
|
[2] |
FENG J, LU X, YANG W, et al. Survey of development and application of train communication network[C]//Proceedings of the 2015 International Conference on Electrical and Information Technologies for Rail Transportation. Berlin: Springer, 2016: 843-854.
|
[3] |
KUROSE J F, ROSS K W. Computer networking: a top-down approach. 7th edition[M]. [S.l.]: Cenveo Publishing Services, 2017.
|
[4] |
赵凯琳,靳小龙,王元卓. 小样本学习研究综述[J]. 软件学报,2021,32(2): 349-369.
ZHAO Kailin, JIN Xiaolong, WANG Yuanzhuo. Survey on few-shot learning[J]. Journal of Software, 2021, 32(2): 349-369.
|
[5] |
TAN X, SU S, HUANG Z, et al. Wireless sensor networks intrusion detection based on SMOTE and the random forest algorithm[J]. Sensors, 2019, 19(203): S19010203.1-S19010203.15. doi: 10.3390/s19010203
|
[6] |
刘金平,周嘉铭,刘先锋,等. 基于聚类簇结构特性的自适应综合采样法在入侵检测中的应用[J]. 控制与决策,2021,36(8): 1920-1928.
LIU Jinping, ZHOU Jiaming, LIU Xianfeng, et al. Toward intrusion detection via cluster structure-based adaptive synthetic sampling approach[J]. Control and Decision, 2021, 36(8): 1920-1928.
|
[7] |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[J]. Advances in Neural Information Processing Systems, 2014, 27: 2672-2680.
|
[8] |
ANDRESINI G, APPICE A, DE ROSE L, et al. GAN augmentation to deal with imbalance in imaging-based intrusion detection[J]. Future Generation Computer Systems, 2021, 123: 108-127. doi: 10.1016/j.future.2021.04.017
|
[9] |
HUANG S, LEI K. IGAN-IDS: an imbalanced generative adversarial network towards intrusion detection system in ad-hoc networks[J]. Ad Hoc Networks, 2020, 105: 102177.1-102177.11. doi: 10.1016/j.adhoc.2020.102177
|
[10] |
REYNOLDS D A. Gaussian mixture models[J]. EncycLopedia of Biometrics, 2009, 741: 659-663.
|
[11] |
ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein generative adversarial networks[C]// Proceedings of the 3th International Conference on Machine Learning. Sydney: [s.n.], 2017: 214-223.
|
[12] |
VILLANI C. Optimal transport: old and new[M]. Berlin: Springer, 2009.
|
[13] |
MAAS A L, HANNUN A Y, NG A Y. Rectifier nonlinearities improve neural network acoustic models[C]// Proceedings of the 30th International Conference on Machine Learning. Atlauta: ICML, 2013: 3-9.
|
[14] |
YUE C, WANG L, WANG D, et al. An ensemble intrusion detection method for train ethernet consist network based on CNN and RNN[J]. IEEE Access, 2021, 9: 59527-59539. doi: 10.1109/ACCESS.2021.3073413
|
[15] |
GIBERT D, MATEU C, PLANES J. The rise of machine learning for detection and classification of malware: research developments, trends and challenges[J]. Journal of Network and Computer Applications, 2020, 153: 102526.1-102526.22. doi: 10.1016/j.jnca.2019.102526
|
[16] |
VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2009, 9(11): 2579-2605.
|