• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
WANG Tao, ZENG Wenhao, YU Qi. Obstacle Detection and Tracking for Driverless Cars Based on Lidar[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1346-1354. doi: 10.3969/j.issn.0258-2724.20200240
Citation: WANG Tao, ZENG Wenhao, YU Qi. Obstacle Detection and Tracking for Driverless Cars Based on Lidar[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1346-1354. doi: 10.3969/j.issn.0258-2724.20200240

Obstacle Detection and Tracking for Driverless Cars Based on Lidar

doi: 10.3969/j.issn.0258-2724.20200240
  • Received Date: 26 Apr 2020
  • Rev Recd Date: 15 Nov 2020
  • Available Online: 05 Jan 2021
  • Publish Date: 05 Jan 2021
  • To improve clustering adaptability, real-time performance, and tracking accuracy in the process of dynamic obstacle detection and tracking with lidar, an adaptive density clustering algorithm and a multi-feature data association method are developed for detection and tracking respectively. Firstly, the point cloud collected by the lidar is pre-processed such as curb detection, area-of-interest extraction and ground segmentation to remove irrelevant point clouds. Then the non-ground point clouds are clustered according to the adaptive clustering algorithm to complete the obstacle point cloud detection. Finally, a weighted multi-feature data association algorithm combined with Kalman filter is used to track dynamic obstacles. The experiments show that the entire detection process with the proposed methods can accurately and stably detect and track the 10 Hz lidar data, and shorten the clustering time by 32%.

     

  • [1]
    谢德胜,徐友春,王任栋,等. 基于三维激光雷达的无人车障碍物检测与跟踪[J]. 汽车工程,2018,40(8): 952-959.

    XIE Desheng, XU Youchun, WANG Rendong, et al. Obstacle detection and tracking for unmanned vehicles based on 3D laser radar[J]. Automotive Engineering, 2018, 40(8): 952-959.
    [2]
    AZIM A, AYCARD O. Layer-based supervised classification of moving objects in outdoor dynamic environment using 3D laser scanner[C]//2014 IEEE Intelligent Vehicles Symposium Proceedings. Dearborn: IEEE, 2014: 1408-1414.
    [3]
    黄钢,吴超仲,吕能超. 基于改进DBSCAN算法的激光雷达目标物检测方法[J]. 交通信息与安全,2015,33(3): 23-28. doi: 10.3963/j.issn.1674-4861.2015.03.004

    HUANG Gang, WU Chaozhong, LYU Nengchao. A study of laser radar object detection based on improved DBSCAN algorithm[J]. Journal of Transport Information and Safety, 2015, 33(3): 23-28. doi: 10.3963/j.issn.1674-4861.2015.03.004
    [4]
    包瑞胜,马新,崔熠明. 基于优化DBSCAN算法的智能车载激光雷达数据处理技术研究[J]. 中国交通信息化,2017(3): 135-140.
    [5]
    ZHANG J S, KEREKES J. An adaptive density-based model for extracting surface returns from photon-counting laser altimeter data[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(4): 726-730. doi: 10.1109/LGRS.2014.2360367
    [6]
    CHEN J R, XU H, WU J Q, et al. Deer crossing road detection with roadside LiDAR sensor[J]. IEEE Access, 2019, 7: 65944-65954. doi: 10.1109/ACCESS.2019.2916718
    [7]
    LEONARD J, HOW J, TELLER S, et al. A perception-driven autonomous urban vehicle[J]. Journal of Field Robotics, 2008, 25(10): 727-774. doi: 10.1002/rob.20262
    [8]
    NAVARRO-SERMENT L E, MERTZ C, HEBERT M. Pedestrian detection and tracking using three-dimensional LiDAR data[J]. The International Journal of Robotics Research, 2010, 29(12): 1516-1528. doi: 10.1177/0278364910370216
    [9]
    汪世财,谈东奎,谢有浩,等. 基于激光雷达点云密度特征的智能车障碍物检测与跟踪[J]. 合肥工业大学学报(自然科学版),2019,42(10): 1311-1317. doi: 10.3969/j.issn.1003-5060.2019.10.003

    WANG Shicai, TAN Dongkui, XIE Youhao, et al. Obstacle detection and tracking for intelligent vehicle based on density characteristics of point cloud using 3D lidar[J]. Journal of Hefei University of Technology(Natural Science), 2019, 42(10): 1311-1317. doi: 10.3969/j.issn.1003-5060.2019.10.003
    [10]
    HAN J, KIM D, LEE M, et al. Enhanced road boundary and obstacle detection using a downward-looking LIDAR sensor[J]. IEEE Transactions on Vehicular Technology, 2012, 61(3): 971-985. doi: 10.1109/TVT.2012.2182785
    [11]
    ZHOU Y, WANG D, XIE X, et al. A fast and accurate segmentation method for ordered LiDAR point cloud of large-scale scenes[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(11): 1981-1985. doi: 10.1109/LGRS.2014.2316009
    [12]
    XU S, WANG R S, WANG H, et al. An optimal hierarchical clustering approach to mobile LiDAR point clouds[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(7): 2765-2776. doi: 10.1109/TITS.2019.2912455
    [13]
    刘健. 基于三维激光雷达的无人驾驶车辆环境建模关键技术研究[D]. 合肥: 中国科学技术大学, 2016.
    [14]
    ZHANG Y S, SUN X, XU H, et al. Tracking multi-vehicles with reference points switches at the intersection using a roadside LiDAR sensor[J]. IEEE Access, 2019, 7: 174072-174082. doi: 10.1109/ACCESS.2019.2953747
  • Relative Articles

    [1]ZHU Jun, ZHANG Tianyi, XIE Yakun, ZHANG Jie, LI Chuangnong, ZHAO Li, LI Weilian. Intelligent Statistic Method for Video Pedestrian Flow Considering Small Object Features[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 705-712, 736. doi: 10.3969/j.issn.0258-2724.20200425
    [2]HUANG He, QIU Kaiyue, LI Wei, LUO Dean. Indoor Geomagnetic Positioning Based on Joint Algorithm of Particle Filter[J]. Journal of Southwest Jiaotong University, 2019, 54(3): 604-610. doi: 10.3969/j.issn.0258-2724.20170927
    [3]YUAN Weina, WANG Jiaxuan. Fast Time-Varying Sparse Channel Estimation Based on Kalman Filter[J]. Journal of Southwest Jiaotong University, 2018, 53(4): 835-841. doi: 10.3969/j.issn.0258-2724.2018.04.023
    [4]WANG Zhifu, LIU Mingchun, ZHOU Yang. Estimation of Longitudinal Speed of In-wheel Motor Driven Vehicle Using Fuzzy Extended Kalman Filter[J]. Journal of Southwest Jiaotong University, 2015, 28(6): 1094-1099. doi: 10.3969/j.issn.0258-2724.2015.06.017
    [5]WANG Xuemei, NI Wenbo. Strapdown Inertial Measurement Method Based on Data Fusion Technique and Its Application to Railway Track[J]. Journal of Southwest Jiaotong University, 2014, 27(1): 8-14,51. doi: 10.3969/j.issn.0258-2724.2014.01.002
    [6]XU Yantian, CHENG Pengfei, CAI Yanhui. Kalman Filter Algorithm for Medium-Range Real-Time Kinematic Positioning with One Reference Station[J]. Journal of Southwest Jiaotong University, 2013, 26(2): 317-322,356. doi: 10.3969/j.issn.0258-2724.2013.02.020
    [7]WU Zhenya, WANG Minghui, ZHANG Ruiping, ADU Jianhua, HU Jun. ADS-B-Based Algorithm for Real-Time Optimal Estimation of Radar Biases[J]. Journal of Southwest Jiaotong University, 2013, 26(1): 102-106,115. doi: 10.3969/j.issn.0258-2724.2013.01.016
    [8]SUN Meiling, LI Yongshu, CHEN Qiang, CAI Guolin. A Filtering Method for LiDAR Cloud Points in Urban Areas Based on Serial Morphological Operators[J]. Journal of Southwest Jiaotong University, 2013, 26(6): 1038-1044. doi: 10.3969/j.issn.0258-2724.2013.06.011
    [9]CUI Bo, ZHANG Jiashu, YANG Yu. Nonlinear Target Tracking Algorithm Based on Block Ensemble Kalman Filter[J]. Journal of Southwest Jiaotong University, 2013, 26(5): 863-869. doi: 10.3969/j.issn.0258-2724.2013.05.013
    [10]ZHOU Cong, XIAO Jian, WANG Song. Application of Multirate Unscented Kalman Filter to State Estimation in Vehicle's Active Front Steering System[J]. Journal of Southwest Jiaotong University, 2012, 25(5): 849-854,894. doi: 10.3969/j.issn.0258-2724.2012.05.019
    [11]WANG Zonghu, LIU Zhijing, CHEN Donghui. Two-Step Hybrid PSO-Based Clustering Algorithm[J]. Journal of Southwest Jiaotong University, 2012, 25(6): 1034-1040,1063. doi: 10.3969/j.issn.0258-2724.2012.06.020
    [12]MA Lei, SHI Xizhi. Recent Development on Consensus-Based Kalman Filtering in Multi-agent Systems[J]. Journal of Southwest Jiaotong University, 2011, 24(2): 287-293. doi: 10.3969/j.issn.0258-2724.2011.02.019
    [13]CHEN Tao-Wei, JIN Wei-Dong, LI Jie. Divisive Hierarchical Clustering Algorithm Based on Grey Relational Measure[J]. Journal of Southwest Jiaotong University, 2010, 23(2): 296-301. doi: 10. 3969/ j. issn. 0258-2724.
    [14]HU Feng, 2, WANG Guoyin, DAI Jin. Quick Discretization Algorithm for Rough Set Based on Dynamic Clustering[J]. Journal of Southwest Jiaotong University, 2010, 23(6): 977-983. doi: 10.3969/j.issn.0258-2724.201
    [15]REN Zizhen, CEN Minyi, ZHANG Tonggang, ZHOU Guoqing. Building Extraction from LIDAR Data Based on Shape Analysis of Contours[J]. Journal of Southwest Jiaotong University, 2009, 22(1): 83-88.
    [16]HU Xuegang, CAO Yongzhao, WU Gongqing. Effective Twice-Clustering Algorithm for Data Streams[J]. Journal of Southwest Jiaotong University, 2009, 22(4): 490-494.
    [17]RONG Jian, DING Xueke, ZHONG Xiaochun. Isoplanatic Angles of Single-and Dual-conjugate Adaptive Optics Systems in Lidar[J]. Journal of Southwest Jiaotong University, 2009, 22(2): 190-194.
    [18]YIN Guisheng, YU Xiang, NING Hui. Incremental Clustering Algorithm Based on Rough Reduction for Data Stream[J]. Journal of Southwest Jiaotong University, 2009, 22(5): 637-642,653.
    [19]YANG Yan, ZHANG Zhaotao. Clustering Method Combining Threshold Algorithm with Ant Colony Algorithm[J]. Journal of Southwest Jiaotong University, 2006, 19(6): 719-722,742.
  • Cited by

    Periodical cited type(17)

    1. 罗国强,潘光洋. 一种双目相机自标定改进算法. 自动化与仪器仪表. 2025(04): 97-101+106 .
    2. 张华旭,刘峥,雷祖芳,谢荣. 基于改进数据关联的三维多目标跟踪算法. 激光杂志. 2024(01): 191-197 .
    3. 陈炜峰,仇昊,吉爱红,胡凯. 基于激光传感器的无人驾驶变换轨迹跟踪系统. 激光杂志. 2024(01): 184-190 .
    4. 宋莹,陆宇杭,陈逸菲. 基于改进欧氏聚类算法的障碍物检测跟踪. 计算机系统应用. 2024(02): 284-290 .
    5. 贾冕茜. 面向无人驾驶车避障的光跳频激光雷达探测目标智能主动跟踪方法. 河南工程学院学报(自然科学版). 2024(01): 55-59+71 .
    6. 许淑贤,赵志梅,吴洪南. 基于三维激光点云的序列运动图像点目标快速跟踪方法. 激光杂志. 2024(10): 101-107 .
    7. 张可,杨麓宁,费义涵,季欣然. 基于固态激光雷达的矿井专用AEB前端子系统设计. 电子设计工程. 2024(23): 98-104 .
    8. 宫彦乔,刘立东,李刚,张东. FSAC赛车动态视野算法研究. 重庆理工大学学报(自然科学). 2023(01): 1-7 .
    9. 曾祥,蒋国涛,潘文波,冷冰涵,陈贵滨. 基于车载激光雷达的列车前方侵限障碍物检测. 控制与信息技术. 2023(01): 72-77 .
    10. 范钦海,陶永忠,王恺,范芊芊. 障碍物检测装置碰撞过程动力学仿真研究. 现代城市轨道交通. 2023(05): 28-35 .
    11. 黄成龙,张忠福,华向东,杨俊雅,柯宇曦,杨万能. 基于改进Faster R-CNN和Deep Sort的棉铃跟踪计数. 农业机械学报. 2023(06): 205-213 .
    12. 郭迎,赵祥模,梁睿琳,王润民. 双目视觉下的自动驾驶车辆多类型障碍物感知. 哈尔滨工程大学学报. 2023(08): 1406-1411 .
    13. 郝世宇,王昆. 基于激光雷达局部地图构建的机器人避障路径规划. 现代雷达. 2023(11): 84-89 .
    14. 周翔. 基于激光雷达点云数据的树种分类分析. 西部资源. 2022(02): 177-179 .
    15. 张长勇,韩梁. 基于优化DBSCAN的激光雷达障碍物检测. 激光与光电子学进展. 2022(12): 516-524 .
    16. 赵治国,王鹏,陈晓蓉,梁凯冲. 转向避撞工况下装载激光雷达车辆的障碍物跟踪. 汽车工程. 2021(11): 1611-1619+1630 .
    17. 张长勇,陈治华,韩梁. 基于改进DBSCAN的激光雷达障碍物检测. 激光与光电子学进展. 2021(24): 451-458 .

    Other cited types(36)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-062025-070255075100125
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 53.8 %FULLTEXT: 53.8 %META: 41.0 %META: 41.0 %PDF: 5.3 %PDF: 5.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 10.9 %其他: 10.9 %其他: 0.4 %其他: 0.4 %China: 0.3 %China: 0.3 %Koesan: 0.1 %Koesan: 0.1 %Research: 0.0 %Research: 0.0 %Rochester: 0.0 %Rochester: 0.0 %Russian Federation: 0.0 %Russian Federation: 0.0 %Saitama: 0.0 %Saitama: 0.0 %上海: 3.0 %上海: 3.0 %东京: 0.1 %东京: 0.1 %东莞: 2.3 %东莞: 2.3 %临汾: 0.1 %临汾: 0.1 %乌鲁木齐: 0.0 %乌鲁木齐: 0.0 %佛山: 0.0 %佛山: 0.0 %保定: 0.0 %保定: 0.0 %儋州: 0.0 %儋州: 0.0 %六安: 0.0 %六安: 0.0 %兰州: 0.0 %兰州: 0.0 %内江: 0.0 %内江: 0.0 %凉山: 0.0 %凉山: 0.0 %包头: 0.1 %包头: 0.1 %北京: 3.6 %北京: 3.6 %十堰: 1.6 %十堰: 1.6 %南京: 1.7 %南京: 1.7 %南宁: 0.2 %南宁: 0.2 %南昌: 0.1 %南昌: 0.1 %南通: 0.8 %南通: 0.8 %南阳: 0.0 %南阳: 0.0 %合肥: 0.3 %合肥: 0.3 %呼和浩特: 0.1 %呼和浩特: 0.1 %咸阳: 0.0 %咸阳: 0.0 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.0 %哥伦布: 0.0 %喀什: 0.0 %喀什: 0.0 %嘉兴: 0.7 %嘉兴: 0.7 %大连: 0.4 %大连: 0.4 %天津: 3.3 %天津: 3.3 %太原: 0.2 %太原: 0.2 %威海: 0.0 %威海: 0.0 %宁德: 0.0 %宁德: 0.0 %宁波: 0.6 %宁波: 0.6 %安康: 0.0 %安康: 0.0 %宜昌: 0.0 %宜昌: 0.0 %宣城: 1.2 %宣城: 1.2 %岳阳: 0.2 %岳阳: 0.2 %巴彦淖尔: 0.0 %巴彦淖尔: 0.0 %巴音郭楞: 0.0 %巴音郭楞: 0.0 %常州: 0.3 %常州: 0.3 %常德: 0.0 %常德: 0.0 %广安: 0.0 %广安: 0.0 %广州: 0.9 %广州: 0.9 %庆阳: 0.0 %庆阳: 0.0 %廊坊: 0.1 %廊坊: 0.1 %延安: 0.1 %延安: 0.1 %张家口: 1.4 %张家口: 1.4 %徐州: 0.2 %徐州: 0.2 %恩施: 0.0 %恩施: 0.0 %悉尼: 0.0 %悉尼: 0.0 %惠州: 0.0 %惠州: 0.0 %成都: 3.3 %成都: 3.3 %扬州: 2.6 %扬州: 2.6 %拉斯维加斯: 0.0 %拉斯维加斯: 0.0 %新乡: 0.0 %新乡: 0.0 %无锡: 0.1 %无锡: 0.1 %昆明: 0.1 %昆明: 0.1 %朝阳: 0.1 %朝阳: 0.1 %杭州: 2.0 %杭州: 2.0 %柳州: 0.2 %柳州: 0.2 %株洲: 0.0 %株洲: 0.0 %格兰特县: 0.0 %格兰特县: 0.0 %桂林: 0.2 %桂林: 0.2 %武汉: 1.1 %武汉: 1.1 %汉中: 0.1 %汉中: 0.1 %江门: 0.1 %江门: 0.1 %池州: 0.7 %池州: 0.7 %沈阳: 1.2 %沈阳: 1.2 %法兰克福: 0.0 %法兰克福: 0.0 %泰安: 0.0 %泰安: 0.0 %泸州: 0.0 %泸州: 0.0 %洛阳: 0.7 %洛阳: 0.7 %济南: 0.2 %济南: 0.2 %淄博: 0.2 %淄博: 0.2 %淮北: 0.0 %淮北: 0.0 %深圳: 0.5 %深圳: 0.5 %清远: 0.2 %清远: 0.2 %温州: 1.2 %温州: 1.2 %湖州: 0.2 %湖州: 0.2 %湘潭: 0.0 %湘潭: 0.0 %湛江: 0.0 %湛江: 0.0 %漯河: 6.6 %漯河: 6.6 %玉溪: 0.0 %玉溪: 0.0 %益阳: 0.1 %益阳: 0.1 %盐城: 0.1 %盐城: 0.1 %石家庄: 1.7 %石家庄: 1.7 %石河子: 0.0 %石河子: 0.0 %福州: 0.5 %福州: 0.5 %科希策: 0.1 %科希策: 0.1 %秦皇岛: 0.3 %秦皇岛: 0.3 %纽约: 0.0 %纽约: 0.0 %绍兴: 0.0 %绍兴: 0.0 %绵阳: 0.0 %绵阳: 0.0 %芒廷维尤: 9.7 %芒廷维尤: 9.7 %芝加哥: 0.2 %芝加哥: 0.2 %苏州: 0.7 %苏州: 0.7 %荆州: 0.0 %荆州: 0.0 %莆田: 0.2 %莆田: 0.2 %莱克朗兰比塞特尔: 0.0 %莱克朗兰比塞特尔: 0.0 %蚌埠: 0.0 %蚌埠: 0.0 %衡阳: 0.2 %衡阳: 0.2 %襄阳: 0.1 %襄阳: 0.1 %西宁: 12.0 %西宁: 12.0 %西安: 0.7 %西安: 0.7 %贵阳: 0.1 %贵阳: 0.1 %资阳: 0.1 %资阳: 0.1 %赣州: 0.1 %赣州: 0.1 %达州: 0.1 %达州: 0.1 %运城: 0.3 %运城: 0.3 %连云港: 0.0 %连云港: 0.0 %邢台: 0.1 %邢台: 0.1 %邯郸: 0.7 %邯郸: 0.7 %郑州: 1.7 %郑州: 1.7 %鄂州: 0.1 %鄂州: 0.1 %重庆: 0.7 %重庆: 0.7 %长春: 0.2 %长春: 0.2 %长沙: 6.9 %长沙: 6.9 %阜新: 0.0 %阜新: 0.0 %阜阳: 0.1 %阜阳: 0.1 %青岛: 2.9 %青岛: 2.9 %香港特别行政区: 0.1 %香港特别行政区: 0.1 %马湾: 0.1 %马湾: 0.1 %马鞍山: 0.0 %马鞍山: 0.0 %黔南: 0.0 %黔南: 0.0 %其他其他ChinaKoesanResearchRochesterRussian FederationSaitama上海东京东莞临汾乌鲁木齐佛山保定儋州六安兰州内江凉山包头北京十堰南京南宁南昌南通南阳合肥呼和浩特咸阳哈尔滨哥伦布喀什嘉兴大连天津太原威海宁德宁波安康宜昌宣城岳阳巴彦淖尔巴音郭楞常州常德广安广州庆阳廊坊延安张家口徐州恩施悉尼惠州成都扬州拉斯维加斯新乡无锡昆明朝阳杭州柳州株洲格兰特县桂林武汉汉中江门池州沈阳法兰克福泰安泸州洛阳济南淄博淮北深圳清远温州湖州湘潭湛江漯河玉溪益阳盐城石家庄石河子福州科希策秦皇岛纽约绍兴绵阳芒廷维尤芝加哥苏州荆州莆田莱克朗兰比塞特尔蚌埠衡阳襄阳西宁西安贵阳资阳赣州达州运城连云港邢台邯郸郑州鄂州重庆长春长沙阜新阜阳青岛香港特别行政区马湾马鞍山黔南

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article views(1124) PDF downloads(131) Cited by(53)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return