• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 59 Issue 5
Oct.  2024
Turn off MathJax
Article Contents
CHEN Shuailin, YANG Wen, LI Hengchao, TAPETE Deodato, BALZ Timo. Edge-Aware Semi-Supervised Built-up Area Extraction Using Multi-Temporal Synthetic Aperture Radar Images[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1225-1234. doi: 10.3969/j.issn.0258-2724.20220807
Citation: CHEN Shuailin, YANG Wen, LI Hengchao, TAPETE Deodato, BALZ Timo. Edge-Aware Semi-Supervised Built-up Area Extraction Using Multi-Temporal Synthetic Aperture Radar Images[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1225-1234. doi: 10.3969/j.issn.0258-2724.20220807

Edge-Aware Semi-Supervised Built-up Area Extraction Using Multi-Temporal Synthetic Aperture Radar Images

doi: 10.3969/j.issn.0258-2724.20220807
  • Received Date: 21 Nov 2022
  • Rev Recd Date: 16 Mar 2023
  • Available Online: 26 Jun 2024
  • Publish Date: 24 Mar 2023
  • To address the challenges of identifying and annotating built-up areas in synthetic aperture radar (SAR) images, a novel semi-supervised method for extracting built-up areas that combined improved pseudo-labeling techniques with an edge enhancement strategy was proposed. Initially, SAR images from the same location but at different time were introduced as a natural data augmentation method, and the pseudo-labels were determined by voting based on the prediction results of multi-temporal images. Subsequently, an edge-enhancement auxiliary module was designed, which corrected the body features of the built-up areas through feature map warping and improved edge features with skip connections. Separate supervision for the body and edge features was performed. Moreover, a dataset for extracting built-up areas in multi-temporal SAR images, which included two types of sensors and two urban areas, was constructed. This dataset contains 1,000 annotated images and 800 groups of unlabeled temporal images. Experimental validations based on this dataset have demonstrated that on the constructed test set, the baseline method trained with full data achieves an intersection over union (IoU) of 63.43%, while the proposed method reaches an IoU of 63.46% and 68.24% when using 10% and full data, respectively. Remarkably, using only 10% of the annotated data, the proposed method can achieve the precision that the baseline method has obtained with full annotated data.

     

  • loading
  • [1]
    LEE J S, POTTIER E. Polarimetric radar imaging: from basics to applications[M]. Florida: CRC Press,2017.
    [2]
    WU W J, GUO H D, LI X W. Urban area SAR image man-made target extraction based on the product model and the time–frequency analysis[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(3): 943-952. doi: 10.1109/JSTARS.2014.2371064
    [3]
    IANNELLI G C, GAMBA P. Urban extent extraction combining sentinel data in the optical and microwave range[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(7): 2209-2216. doi: 10.1109/JSTARS.2019.2920678
    [4]
    CHEN Q H, XIAO Y, GAO W L, et al. Building density change monitoring using dual-polarimetric sentinel-1 SAR data[C]//2021 SAR in Big Data Era (BIGSARDATA). Nanjing: IEEE,2021:1-4.
    [5]
    CHEN S W, WANG X S, XIAO S P. Urban damage level mapping based on co-polarization coherence pattern using multitemporal polarimetric SAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(8): 2657-2667. doi: 10.1109/JSTARS.2018.2818939
    [6]
    YANG X L, SONG Z X, KING I, et al. A survey on deep semi-supervised learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(9): 8934-8954. doi: 10.1109/TKDE.2022.3220219
    [7]
    吴樊,张红,王超,等. SARBuD 1.0:面向深度学习的GF-3精细模式SAR建筑数据集[J]. 遥感学报,2022,26(4): 620-631. doi: 10.11834/jrs.20220296

    WU Fan, ZHANG Hong, WANG Chao, et al. SARBuD 1.0: a SAR building dataset based on GF-3 FSⅡ imageries for built-up area extraction with deep learning method[J]. National Remote Sensing Bulletin, 2022, 26(4): 620-631. doi: 10.11834/jrs.20220296
    [8]
    LIU X Y, HUANG Y L, WANG C W, et al. Semi-supervised SAR ATR via conditional generative adversarial network with multi-discriminator[C]//2021 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Brussels:IEEE,2021:2361-2364.
    [9]
    ZHENG C, JIANG X, LIU X Z. Semi-supervised SAR ATR via multi-discriminator generative adversarial network[J]. IEEE Sensors Journal, 2019, 19(17): 7525-7533. doi: 10.1109/JSEN.2019.2915379
    [10]
    SUN Q G, LI X F, LI L L, et al. Semi-supervised complex-valued GAN for polarimetric SAR image classification[C]//2019 IEEE International Geoscience and Remote Sensing Symposium. Yokohama:IEEE,2019: 3245-3248.
    [11]
    LIAO L Y, DU L, GUO Y C. Semi-supervised SAR target detection based on an improved faster R-CNN[J]. Remote Sensing, 2021, 14(1): 143.1-143.22.
    [12]
    WANG C C, GU H, SU W M. SAR image classification using contrastive learning and pseudo-labels with limited data[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4012505.1-4012505.5.
    [13]
    KEYDEL E R, LEE S W, MOORE J T. MSTAR extended operating conditions: a tutorial[C]// Algorithms for Synthetic Aperture Radar Imagery Ⅲ. Orlando: SPIE, 1996: 228-242.
    [14]
    RIZVE M N, DUARTE K, RAWAT Y S, et al. In defense of pseudo-labeling: an uncertainty-aware pseudo-label selection framework for semi-supervised learning[EB/OL]. (2021-01-15)[2022-08-10]. http://arxiv.org/abs/2101.06329.
    [15]
    LI Y Y, XING R T, JIAO L C, et al. Semi-supervised PolSAR image classification based on self-training and superpixels[J]. Remote Sensing, 2019, 11(16): 1933-1951. doi: 10.3390/rs11161933
    [16]
    ZHAO F, TIAN M, XIE W, et al. A new parallel dual-channel fully convolutional network via semi-supervised FCM for PolSAR image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 4493-4505. doi: 10.1109/JSTARS.2020.3014966
    [17]
    邓云凯,禹卫东,张衡,等. 未来星载SAR技术发展趋势[J]. 雷达学报,2020,9(1): 1-33. doi: 10.12000/JR20008

    DENG Yunkai, YU Weidong, ZHANG Heng, et al. Forthcoming spaceborne SAR development[J]. Journal of Radars, 2020, 9(1): 1-33. doi: 10.12000/JR20008
    [18]
    TANG L Y, ZHAN Y B, CHEN Z, et al. Contrastive boundary learning for point cloud segmentation [C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans: IEEE, 2022: 8479-8489.
    [19]
    梁烽,张瑞祥,柴英特,等. 一种结合上下文与边缘注意力的SAR图像海陆分割深度网络方法[J]. 武汉大学学报(信息科学版),2023,48(8): 1286-1295.

    LIANG Feng, ZHANG Ruixiang, CHAI Yingte, et al. A sea-land segmentation method for SAR images using context-aware and edge attention based CNNs[J]. Geomatics and Information Science of Wuhan University, 2023, 48(8): 1286-1295.
    [20]
    JUNG H, CHOI H S, KANG M. Boundary enhancement semantic segmentation for building extraction from remote sensed image[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5215512.1-5215512.12.
    [21]
    LI X T, LI X, ZHANG L, et al. Improving semantic segmentation via decoupled body and edge supervision [C]//European Conference on Computer Vision. Cham: Springer, 2020: 435-452.
    [22]
    陈帅霖,杨文,李恒超,等. 顾及边缘的多时相SAR图像半监督建筑区提取[EB/OL]. [2023-03-02]. https://github.com/slchenchn/MTSBED.
    [23]
    PITZ W, MILLER D. The TerraSAR-X satellite[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(2): 615-622. doi: 10.1109/TGRS.2009.2037432
    [24]
    COVELLO F, BATTAZZA F, COLETTA A, et al. COSMO-SkyMed an existing opportunity for observing the earth[J]. Journal of Geodynamics, 2010, 49(3): 171-180.
    [25]
    ARAZO E, ORTEGO D, ALBERT P, et al. Pseudo-labeling and confirmation bias in deep semi-supervised learning[C]//2020 International Joint Conference on Neural Networks (IJCNN). Glasgow: IEEE, 2020: 1-8.
    [26]
    TOMPSON J, GOROSHIN R, JAIN A, et al. Efficient object localization using convolutional networks[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston: IEEE, 2015: 648-656.
    [27]
    DOSOVITSKIY A, FISCHER P, ILG E, et al. FlowNet: learning optical flow with convolutional networks[C]// 2015 IEEE International Conference on Computer Vision (ICCV). Santiago: IEEE, 2015: 2758-2766.
    [28]
    ZHU Y, SAPRA K, REDA F A, et al. Improving semantic segmentation via video propagation and label relaxation[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach: IEEE, 2019: 8848-8857.
    [29]
    WANG J D, SUN K, CHENG T H, et al. Deep high-resolution representation learning for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(10): 3349-3364. doi: 10.1109/TPAMI.2020.2983686
    [30]
    CHEN X K, YUAN Y H, ZENG G, et al. Semi-supervised semantic segmentation with cross pseudo supervision[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville: IEEE, 2021: 2613-2622.
    [31]
    LI Q Y, SHI Y L, ZHU X X. Semi-supervised building footprint generation with feature and output consistency training[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5623217. 1-5623217. 17.
    [32]
    LEE E, JEONG S, KIM J, et al. Semantic equalization learning for semi-supervised SAR building segmentation[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4511505.1-4511505.5.
    [33]
    YUN S, HAN D, CHUN S, et al. CutMix: regularization strategy to train strong classifiers with localizable features[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul: IEEE, 2019: 6022-6031.
    [34]
    LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//2017 IEEE International Conference on Computer Vision (ICCV). Venice: IEEE, 2017: 2999-3007.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article views(159) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return