• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 30 Issue 5
Sep.  2017
Turn off MathJax
Article Contents
LI Sihui, CAI Baigen, XU Aiguo, SHANGGUAN Wei, WEN Yinghong, WANG Jian. Autonomous-Positioning Information Aided Train Integrity Detection Risk Analysis Method[J]. Journal of Southwest Jiaotong University, 2017, 30(5): 886-892. doi: 10.3969/j.issn.0258-2724.2017.05.007
Citation: LI Sihui, CAI Baigen, XU Aiguo, SHANGGUAN Wei, WEN Yinghong, WANG Jian. Autonomous-Positioning Information Aided Train Integrity Detection Risk Analysis Method[J]. Journal of Southwest Jiaotong University, 2017, 30(5): 886-892. doi: 10.3969/j.issn.0258-2724.2017.05.007

Autonomous-Positioning Information Aided Train Integrity Detection Risk Analysis Method

doi: 10.3969/j.issn.0258-2724.2017.05.007
  • Received Date: 30 May 2016
  • Publish Date: 25 Oct 2017
  • Autonomous-positioning information error and failure can lead to a safety risk in train integrity detection. In this study, the problem of train integrity detection, which determines whether a train remains intact in terms of relative position, velocity and acceleration, was investigated. A Bayesian risk-based train integrity detection risk analysis model was proposed to determine both the false-alarm rate and failure rate of autonomous-positioning information based train integrity detection. In this model, both the misdetection probability and failure probability of each autonomous-positioning information were applied to find the misdetection rate and false-alarm rate of train integrity detection. Then, a simulation based on field data was conducted to verify the train integrity detection risk analysis method. The results show that the risk of false alarms is 10-1.8, which is larger than the risk of misdetection (10-5.5) in the complete train scenario. In contrast, in the train break scenario, the risk of misdetection is 10-1.8 when cruising and 1 when accelerating, which are larger than the risk of false alarms (10-4.5 when cruising and 0 when accelerating). The results conform to the train integrity states, indicating that the risk analysis model has sufficient capability to calculate the risk of autonomous-positioning information aided train integrity detection.

     

  • loading
  • 温丽健,陆承超,南丁. 移动闭塞条件下列车完整性检查的方案探讨[J]. 中国科技信息,2010(2):262-263. WEN Li Jian, LU Cheng Chao, NAN Ding. Scheme discussion of Train integrity detection under conditions of moving block[J]. China Science and Technology, 2010(2):262-263.
    李伟. GPS辅助列车完整性监测系统的设计与实现[D]. 北京:北京交通大学,2012.
    安毅,蔡伯根,宁滨,等. 基于GPS和虚拟卫星的列车完整性检查方法研究[J]. 铁道学报,2012,34(9):40-44. AN Yi, CAI Baigen, NING Bin, et al. Research on train integrity monitoring method based on GPS and virtual-satellite[J]. Journal of the China railway society, 2012, 34(9):40-44.
    陈晓乾. GPS在列车完整性检查中的应用研究[D]. 北京:北京交通大学,2006.
    王剑,靳成铭,蔡伯根,等. 面向我国低密度线路的列车运行控制系统[J]. 铁道学报,2015,37(12):46-52. WANG Jian, JIN Chengming, CAI Baigen, et al. A train control system for low density line in China[J]. Journal of the China railway society, 2015, 37(12):46-52.
    ACHARYA A, SADHU S, GHOSHAL T K. Train localization and parting detection using data fusion[J]. Transportation Research Part C Emerging Technologies, 2011, 19(1):75-84.
    JANA H. GNSS train position integrity monitoring by the help of discrete PIM algorithms[J]. Journal of Applied Mathematics, 2009, 2(2):73-80.
    SCHOEMAKER M. Train-spotting,a WSN-Based train integrity system[C]//Proc. of Eighth International Conference on Networks.Washington D. C.:IEEE Press, 2009:226-231.
    SCHOLTEN H, WESTENBERG R, SCHOEMAKER M. Sensing train integrity[C]//Proc. of SENSORS.Canterbury:IEEE Press, 2009:669-674.
    杨克须. 基于多传感器的列车完整性检测技术研究[D]. 北京:北京交通大学,2014.
    刘江. 基于鲁棒估计理论的列车组合定位方法研究[D]. 北京:北京交通大学,2011.
    MING C, Dong W, JI Y. A distributed approach for track occupancy detection[J]. Control Engineering Practice, 2014, 22(1):69-80.
    PAVLOVIC V, REHG J, CHAM T. A dynamic bayesian network approach to figure tracking using learned dynamic models[C]//Proc of Conf. Computer Vision.Corfu:IEEE Press, 1999:94-101.
    PAVLOVIC V, REHG J M, CHAM T J. A dynamic bayesian network approach to tracking using learned switching dynamic models[C]//Proc. of Conf. Hybrid Systems:Computation and Control.Pittsburgh:IEEE Press, 2000:366-380.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(520) PDF downloads(64) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return