• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 59 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
HUA Zexi, SHI Huibin, LUO Yan, ZHANG Ziyuan, LI Weilong, TANG Yongchuan. Detection and Recognition of Digital Instruments Based on Lightweight YOLO-v4 Model at Substations[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 70-80. doi: 10.3969/j.issn.0258-2724.20210544
Citation: HUA Zexi, SHI Huibin, LUO Yan, ZHANG Ziyuan, LI Weilong, TANG Yongchuan. Detection and Recognition of Digital Instruments Based on Lightweight YOLO-v4 Model at Substations[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 70-80. doi: 10.3969/j.issn.0258-2724.20210544

Detection and Recognition of Digital Instruments Based on Lightweight YOLO-v4 Model at Substations

doi: 10.3969/j.issn.0258-2724.20210544
  • Received Date: 08 Jul 2021
  • Rev Recd Date: 30 Sep 2021
  • Available Online: 08 Aug 2023
  • Publish Date: 27 Oct 2021
  • In order to accurately recognize the readings of digital instruments in the actual scene of substations, intelligently control substation security, and promote its intelligent development, the digital instruments in the substation are taken as the research object, and in view of real-time and accuracy, a lightweight YOLO-v4 model is proposed for the detection and recognition of digital instruments. Firstly, the digital instrument images captured from the Ordos substation are expanded by using the Albumentations framework, thus building an effective digital instrument data set for detection and recognition. After that, an efficient channel attention (ECA)-based deep separable convolution block (ECA-bneck-m) is constructed with attention mechanism, and further a lightweight YOLO-v4 model is proposed to conduct comparative experiments on model size and performance. Finally, experiments comparing model size and performance are performed. The results show that, the storage size of the model can be compressed by about 5 times nearly without loss of detection accuracy, and the processing speed of model can be increased from 24.0 frame/s to 36.9 frame/s, indicating that the proposed model can meet the requirements of real-time detection and recognition in the actual substation.

     

  • loading
  • [1]
    CUI X X, FANG H, YANG G Q, et al. A new method of digital number recognition for substation inspection robot[C]//2016 4th International Conference on Applied Robotics for the Power Industry (CARPI). Jinan: IEEE, 2016: 1-4.
    [2]
    卜令正,王洪栋,朱美强,等. 基于改进卷积神经网络的多源数字识别算法[J]. 计算机应用,2018,38(12): 3403-3408.

    BU Lingzheng, WANG Hongdong, ZHU Meiqiang, et al. Multi-source digit recognition algorithm based on improved convolutional neural network[J]. Journal of Computer Applications, 2018, 38(12): 3403-3408.
    [3]
    郭兰英,韩睿之,程鑫. 基于可变形卷积神经网络的数字仪表识别方法[J]. 计算机科学,2020,47(10): 187-193.

    GUO Lanying, HAN Ruizhi, CHENG Xin. Digital instrument identification method based on deformable convolutional neural network[J]. Computer Science, 2020, 47(10): 187-193.
    [4]
    陈刚,胡子峰,郑超. 基于特征检测的数字仪表数码快速识别算法[J]. 中国测试,2019,45(4): 146-150.

    CHEN Gang, HU Zifeng, ZHENG Chao. Fast recognition algorithm for digital instruments based on feature detection[J]. China Measurement & Test, 2019, 45(4): 146-150.
    [5]
    郭爽. 数码管数字仪表自动识别方法的研究[J]. 通信技术,2012,45(8): 91-93.

    GUO Shuang. Study on automatic identification method of digital tube[J]. Communications Technology, 2012, 45(8): 91-93.
    [6]
    高菊,叶桦. 一种有效的水表数字图像二次识别算法[J]. 东南大学学报(自然科学版),2013,43(增1): 153-157.

    GAO Ju, YE Hua. An effective two-times recognition algorithm of meter digital image[J]. Journal of Southeast University (Natural Science Edition), 2013, 43(S1): 153-157.
    [7]
    ZHOU C H, ZHOU J Y, YU C, et al. Multi-channel sliced deep RCNN with residual network for text classification[J]. Chinese Journal of Electronics, 2020, 29(5): 880-886. doi: 10.1049/cje.2020.08.003
    [8]
    SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651.
    [9]
    TANG Z L, LIU Q Q, WU M J, et al. WiFi CSI gesture recognition based on parallel LSTM-FCN deep space-time neural network[J]. China Communications, 2021, 18(3): 205-215. doi: 10.23919/JCC.2021.03.016
    [10]
    黄继鹏,史颖欢,高阳. 面向小目标的多尺度Faster-RCNN检测算法[J]. 计算机研究与发展,2019,56(2): 319-327.

    HUANG Jipeng, SHI Yinghuan, GAO Yang. Multi-scale faster-RCNN algorithm for small object detection[J]. Journal of Computer Research and Development, 2019, 56(2): 319-327.
    [11]
    林刚,王波,彭辉,等. 基于改进Faster-RCNN的输电线巡检图像多目标检测及定位[J]. 电力自动化设备,2019,39(5): 213-218.

    LIN Gang, WANG Bo, PENG Hui, et al. Multi-target detection and location of transmission line inspection image based on improved Faster-RCNN[J]. Electric Power Automation Equipment, 2019, 39(5): 213-218.
    [12]
    王粉花,黄超,赵波,等. 基于YOLO算法的手势识别[J]. 北京理工大学学报,2020,40(8): 873-879.

    WANG Fenhua, HUANG Chao, ZHAO Bo, et al. Gesture recognition based on YOLO algorithm[J]. Transactions of Beijing Institute of Technology, 2020, 40(8): 873-879.
    [13]
    昝珊珊,李波. 融合改进YOLOv2网络的视觉多目标跟踪方法[J]. 小型微型计算机系统,2020,41(12): 2601-2606.

    ZAN Shanshan, LI Bo. Visual multi-target tracking method combined with improved YOLOv2 network[J]. Journal of Chinese Computer Systems, 2020, 41(12): 2601-2606.
    [14]
    寇大磊,权冀川,张仲伟. 基于深度学习的目标检测框架进展研究[J]. 计算机工程与应用,2019,55(11): 25-34.

    KOU Dalei, QUAN Jichuan, ZHANG Zhongwei. Research on progress of object detection framework based on deep learning[J]. Computer Engineering and Applications, 2019, 55(11): 25-34.
    [15]
    郭璠,张泳祥,唐琎,等. YOLOv3-A:基于注意力机制的交通标志检测网络[J]. 通信学报,2021,42(1): 87-99.

    GUO Fan, ZHANG Yongyang, TANG Jin, et al. YOLOv3-A: a traffic sign detection network based on attention mechanism[J]. Journal on Communications, 2021, 42(1): 87-99.
    [16]
    DEGADWALA S, VYAS D, CHAKRABORTY U, et al. Yolo-v4 deep learning model for medical face mask detection[C]//2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS). Coimbatore: IEEE, 2021: 209-213.
    [17]
    窦其龙,颜明重,朱大奇. 基于YOLO-v5的星载SAR图像海洋小目标检测[J]. 应用科技,2021,48(6): 1-7. doi: 10.11991/yykj.202105023

    DOU Qilong, YAN Mingzhong, ZHU Daqi. Small marine target detection in space-borne SAR image based on YOLO-v5[J]. Applied Science and Technology, 2021, 48(6): 1-7. doi: 10.11991/yykj.202105023
    [18]
    来文豪,周孟然,胡锋,等. 基于多光谱成像和改进YOLO v4的煤矸石检测[J]. 光学学报,2020,40(24): 72-80.

    LAI Wenhao, ZHOU Mengran, HU Feng, et al. Coal gangue detection based on multi-spectral imaging and improved YOLO v4[J]. Acta Optica Sinica, 2020, 40(24): 72-80.
    [19]
    KANNADAGULI P. YOLO v4 based human detection system using aerial thermal imaging for UAV based surveillance applications[C]//2020 International Conference on Decision Aid Sciences and Application (DASA). Sakheer: IEEE, 2020: 1213-1219.
    [20]
    DENG B Y, LEI X C, YE M. Safety helmet detection method based on YOLO v4[C]//2020 16th Inter-national Conference on Computational Intelligence and Security (CIS). Guangxi: IEEE, 2021: 155-158.
    [21]
    LI Y T, HUANG H S, XIE Q S, et al. Research on a surface defect detection algorithm based on MobileNet-SSD[J]. Applied Sciences, 2018, 8(9): 1678.1-1678.17. doi: 10.3390/app8091678
    [22]
    SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City: IEEE, 2018: 4510-4520.
    [23]
    HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul: IEEE, 2020: 1314-1324.
    [24]
    盛敏,刘双庆,王婕,等. 基于改进模板匹配的智能下肢假肢运动意图实时识别[J]. 控制与决策,2020,35(9): 2153-2161.

    SHENG Min, LIU Shuangqing, WANG Jie, et al. Real-time motion intent recognition of intelligent lower limb prosthesis based on improved template matching technique[J]. Control and Decision, 2020, 35(9): 2153-2161.
    [25]
    刘宇晴,王天昊,徐旭. 深度学习神经网络的新型自适应激活函数[J]. 吉林大学学报(理学版),2019,57(4): 857-859.

    LIU Yuqing, WANG Tianhao, XU Xu. New adaptive activation function for deep learning neural networks[J]. Journal of Jilin University (Science Edition), 2019, 57(4): 857-859.
    [26]
    马小陆,方洋,王兵,等. 一种改进的YOLO v3红外图像行人检测方法[J]. 湖北理工学院学报,2020,36(6): 19-24,38. doi: 10.3969/j.issn.2095-4565.2020.06.005

    MA Xiaolu, FANG Yang, WANG Bing, et al. An improved YOLO v3 infrared image pedestrian detection method[J]. Journal of Hubei Polytechnic University, 2020, 36(6): 19-24,38. doi: 10.3969/j.issn.2095-4565.2020.06.005
    [27]
    杨蜀秦, 刘江川, 徐可可, 等. 基于改进CenterNet的玉米雄蕊无人机遥感图像识别[J]. 农业机械学报, 2021, 52(9): 206-212.

    YANG Shuqin, LIU Jiangchuan, XU Keke, et al. Improved CenterNet based maize tassel recognition for UAV remote sensing image[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(9): 206-212.
    [28]
    王钏文,王磊,黄仁欢,等. 基于YOLOv3算法的中低速列车在途障碍物检测方法[J]. 铁路通信信号工程技术,2021,18(7): 86-89.

    WANG Chuanwen, WANG Lei, HUANG Renhuan, et al. Detection method of obstacles of medium-low speed train in transit based on YOLOv3 algorithm[J]. Railway Signalling & Communication Engineering, 2021, 18(7): 86-89.
    [29]
    张欣,张永强,何斌,等. 基于YOLOv4-tiny的遥感图像飞机目标检测技术研究[J]. 光学技术,2021,47(3): 344-351.

    ZHANG Xin, ZHANG Yongqiang, HE Bin, et al. Research on remote sensing image aircraft target detection technology based on YOLOv4-tiny[J]. Optical Technique, 2021, 47(3): 344-351.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(6)

    Article views(489) PDF downloads(120) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return