Citation: | MA Junjun, LIN Pengzhen, LIU Yinglong, HE Zhigang. Simulation and Analysis of Chloride Ion Diffusion in Cracked Concrete Based on Cellular Automata[J]. Journal of Southwest Jiaotong University, 2022, 57(2): 360-368. doi: 10.3969/j.issn.0258-2724.20210359 |
In order to obtain the concentration distribution of chloride ions in cracked concrete and analyze the influence of crack shape, distribution form and deflection angle on the chloride ion diffusion in concrete, a cellular automata model for simulating the diffusion process of chloride ions in cracked concrete is established by using cellular automata and homogenization equivalent analysis methods according to the diffusion mechanism of chloride ions in cracked concrete; the cell size in the model is optimized by numerical experiments. The results show that the computational efficiency of the model can be improved with a high calculation accuracy when the cell size of is 0.5 mm. Except for individual data, the model simulation results are in good agreement with the test results and finite element analysis results, and the maximum deviation is no more than 10%. The chloride ion concentration in the "V" crack is about 0.52 times that in the rectangular crack. The chloride ion concentration in curved cracks and broken line cracks is about 0.87 times and 0.89 times that in linear cracks, respectively. When the fracture deflection angle increases from 0° to 10°, 20°, and 30°, the chloride ion concentration at the fracture end decreases by 3.3%, 21.9%, and 29.8%, respectively. The influence range of the crack on the chloride diffusion zone around the crack is independent of the shape, distribution form, and deflection angle of the crack. The influenced area is mainly concentrated on the range of about 18 mm perpendicular to the crack.
[1] |
金伟良,延永东,王海龙. 氯离子在受荷混凝土内的传输研究进展[J]. 硅酸盐学报,2010,38(11): 2217-2224.
JIN Weiliang, YAN Yongdong, WANG Hailong. Research progress on the chloride transportation in stressed concrete[J]. Journal of the Chinese Ceramic Society, 2010, 38(11): 2217-2224.
|
[2] |
ZHANG W, FRANCOIS R, CAI Y, et al. Influence of artificial cracks and interfacial defects on the corrosion behavior of steel in concrete during corrosion initiation under a chloride environment[J]. Construction and Building Materials, 2020, 253: 119-165.
|
[3] |
DJERBI A, BONNET S, KHELIDJ A, et al. Influence of traversing crack on chloride diffusion into concrete[J]. Cement and Concrete Research, 2008, 38(6): 877-883. doi: 10.1016/j.cemconres.2007.10.007
|
[4] |
何世钦,贡金鑫. 弯曲荷载作用对混凝土中氯离子扩散的影响[J]. 建筑材料学报,2005,8(2): 134-138. doi: 10.3969/j.issn.1007-9629.2005.02.004
HE Shiqin, GONG Jinxin. Influence of flexural loading on permeability of chloride ion in concrete[J]. Journal of Building Materials, 2005, 8(2): 134-138. doi: 10.3969/j.issn.1007-9629.2005.02.004
|
[5] |
SAHMARAN M. Effect of flexure induced transverse crack and self-healing on chloride diffusivity of reinforced mortar[J]. Journal of Materials Science, 2007, 42(22): 9131-9136. doi: 10.1007/s10853-007-1932-z
|
[6] |
ZHU H, HUO Q, FAN J, et al. The depth-width correlation for shrinkage-induced cracks and its influence on chloride diffusion into concrete[J]. Materials, 2020, 13(12): 2751. doi: 10.3390/ma13122751
|
[7] |
张菊辉,刘颖慧,时哲敏. 氯离子在开裂混凝土中的扩散特性研究[J]. 建筑材料学报,2018,21(2): 299-303. doi: 10.3969/j.issn.1007-9629.2018.02.020
ZHANG Juhui, LIU Yinghui, SHI Zhemin. Diffusion property of chloride in cracked concrete[J]. Journal of Building Materials, 2018, 21(2): 299-303. doi: 10.3969/j.issn.1007-9629.2018.02.020
|
[8] |
LI Y, CHEN X, JIN L, et al. Experimental and numerical study on chloride transmission in cracked concrete[J]. Construction and Building Materials, 2016, 127(30): 425-435. doi: 10.1016/j.conbuildmat.2016.10.044
|
[9] |
JANG S Y, KIM B S, OH B H. Effect of crack width on chloride diffusion coefficients of concrete by steady-state migration tests[J]. Cement and Concrete Research, 2011, 41(1): 9-19. doi: 10.1016/j.cemconres.2010.08.018
|
[10] |
ISMAIL M, TOUMI A, FRANÇOIS R, et al. Effect of crack opening on the local diffusion of chloride in cracked mortar samples[J]. Cement and Concrete Research, 2008, 38(8/9): 1106-1111. doi: 10.1016/j.cemconres.2008.03.009
|
[11] |
张斌,陈红帅,张权,等. 细观层次开裂混凝土中氯离子扩散数值模拟[J]. 公路交通科技(应用技术版),2020,16(6): 124-129.
|
[12] |
GÉRARD B, MARCHAND J. Influence of cracking on the diffusion properties of cement-based materials:part I:influence of continuous cracks on the steady-state regime[J]. Cement and Concrete Research, 2000, 30(1): 37-43. doi: 10.1016/S0008-8846(99)00201-X
|
[13] |
KWON S J, NA U J, PARK S S, et al. Service life prediction of concrete wharves with early-aged crack:Probabilistic approach for chloride diffusion[J]. Structural Safety, 2009, 31(1): 75-83. doi: 10.1016/j.strusafe.2008.03.004
|
[14] |
PARK S S, KWON S J, JUNG S H. Analysis technique for chloride penetration in cracked concrete using equivalent diffusion and permeation[J]. Construction and Building Materials, 2012, 29: 183-192. doi: 10.1016/j.conbuildmat.2011.09.019
|
[15] |
马俊军,蔺鹏臻. 混凝土桥梁中氯离子传输的元胞自动机模型[J]. 铁道科学与工程学报,2018,15(12): 3135-3140.
MA Junjun, LIN Pengzhen. Cellular automata model for chloride ion transport in concrete bridges[J]. Journal of Railway Science and Engineering, 2018, 15(12): 3135-3140.
|
[16] |
BIONDINI F, BONTEMPI F, FRANGOPOL D M, et al. Cellular automata approach to durability analysis of concrete structures in aggressive environments[J]. Journal of Structural Engineering, 2004, 130(11): 1724-1737. doi: 10.1061/(ASCE)0733-9445(2004)130:11(1724)
|
[17] |
DU X, JIN L, ZHANG R, et al. Effect of cracks on concrete diffusivity:a meso-scale numerical study[J]. Ocean Engineering, 2015, 108: 539-551. doi: 10.1016/j.oceaneng.2015.08.054
|
[18] |
SCHUTTER G D. Quantification of the influence of cracks in concrete structures on carbonation and chloride penetration[J]. Magazine of Concrete Research, 1999, 51(6): 427-435. doi: 10.1680/macr.1999.51.6.427
|
[1] | LI Xun, CHENG Shuo, WU Dandan, ZHANG Lei, WANG Xiaohua. Refined Traffic Flow Model Based on Cellular Automaton Under Cooperative Vehicle Infrastructure System[J]. Journal of Southwest Jiaotong University, 2025, 60(1): 225-232. doi: 10.3969/j.issn.0258-2724.20220830 |
[2] | ZHAO Haitao, DING Jian, YANG Guo, XIANG Yu, XU Wen, CHEN Yuzhi. Experimental Investigation of Relative Humidity Response in Early-Age Concrete Under Tensile Stress[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1104-1112. doi: 10.3969/j.issn.0258-2724.20220134 |
[3] | LIANG Jun, GENG Haoran, CHEN Long, YU Bin, LU Guangquan. Integrated Heterogeneous Traffic Flow Model of Bus and Autonomous Vehicle Platoon[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1090-1099. doi: 10.3969/j.issn.0258-2724.20220313 |
[4] | FENG Bo, LIU Qing, QIAN Yongjiu. Durability Analysis of High-Performance Concrete Under Chloride Salt Erosion and Freeze-Thaw Cycles[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1083-1089. doi: 10.3969/j.issn.0258-2724.20220035 |
[5] | ZHANG Yunguo, ZHANG Junjun, HAN Yue. Characteristics of Chloride Ion Permeation in Concrete of Type Ⅰ Fracture Crack Propagation[J]. Journal of Southwest Jiaotong University, 2022, 57(5): 1047-1054. doi: 10.3969/j.issn.0258-2724.20200741 |
[6] | ZHAO Renda, YANG Shiyu, JIA Wentao, ZENG Xianshuai, JIN Hesong, LI Fuhai. Review of Recent Progress in Durability of Fly Ash Based Geopolymer Concrete[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 1065-1074. doi: 10.3969/j.issn.0258-2724.20190993 |
[7] | FAN Xinnan, WANG Jie, SHI Pengfei, LI Min. Pavement Crack Segmentation Algorithm Based on Pulse Coupled Neural Network with Brainstorming Optimization[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 572-578. doi: 10.3969/j.issn.0258-2724.20190354 |
[8] | REN Juanjuan, DU Wei, DENG Shijie, FENG Xiang. Chloride Ion Transport in Concrete of Ballastless Track under Fatigue Loading[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 510-516. doi: 10.3969/j.issn.0258-2724.20190690 |
[9] | LUO Jia, LIU Dagang. Tunnel Crack Extraction Based on Adaptive Threshold and Connected Domain[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1137-1141, 1149. doi: 10.3969/j.issn.0258-2724.2018.06.007 |
[10] | YANG Enhui, ZHANG Aonan, DING Shihai, WANG Kelvin C. P.. Automatic Detection Method for Highway Pavement Cracking Based on the 3D Shadow Modeling[J]. Journal of Southwest Jiaotong University, 2017, 30(2): 288-294. doi: 10.3969/j.issn.0258-2724.2017.02.011 |
[11] | YAO Lingkan, HUANG Yidan. Self-Organized Criticality of Mountain System Catastrophic Behaviors[J]. Journal of Southwest Jiaotong University, 2016, 29(2): 313-330. doi: 10.3969/j.issn.0258-2724.2016.02.011 |
[12] | JIANG Xinguo, XIA Liang. Simulation of Temporary Traffic Bottleneck on Highways Based on Cellular Automaton[J]. Journal of Southwest Jiaotong University, 2016, 29(1): 128-137. doi: 10.3969/j.issn.0258-2724.2016.01.019 |
[13] | JI Yongsheng, ZENG Ping, MA Huirong, ZHANG Linglei, ZHAO Wen. Experimental Research on Influence of Transverse Crack on Corrosion Rate of Rebar in Concrete[J]. Journal of Southwest Jiaotong University, 2013, 26(1): 36-41,61. doi: 10.3969/j.issn.0258-2724.2013.01.006 |
[14] | HUANG Yidan, YAO Lingkan, GUO Chenwen. Distribution Law of Landslides Triggered by Earthquake Based on Cellular Automata[J]. Journal of Southwest Jiaotong University, 2013, 26(4): 609-615. doi: 10.3969/j.issn.0258-2724.2013.04.004 |
[15] | CAO Jixing, CHEN Qiu, ZHANG Jiping. Simulation of SHPB Test on Concrete and Uniformity of Stresses[J]. Journal of Southwest Jiaotong University, 2008, 21(1): 67-70. |
[16] | SU Fenghuan, YAO Lingkan, GAO Zhaoning. Application of Fractal Cellular Automata to Self-Organized Criticality[J]. Journal of Southwest Jiaotong University, 2006, 19(6): 675-679. |
[17] | LI Zhenxin, GUO Fengzhe, QIAN Yongjiu. Fuzzy Comprehensive Evaluation of Durability of Existing Reinforced Concrete Arch Bridges[J]. Journal of Southwest Jiaotong University, 2006, 19(3): 366-370. |
1. | 潘丽霞,王耀增. 裂缝宽度与深度对管桩混凝土氯离子扩散影响的数值模拟探究. 广州建筑. 2024(09): 98-103 . ![]() | |
2. | 陈飞,朱春东,王勇. 先张自平衡预应力技术在桥面板构件中的应用. 混凝土与水泥制品. 2023(11): 41-46 . ![]() |