• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
REN Juanjuan, DU Wei, DENG Shijie, FENG Xiang. Chloride Ion Transport in Concrete of Ballastless Track under Fatigue Loading[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 510-516. doi: 10.3969/j.issn.0258-2724.20190690
Citation: REN Juanjuan, DU Wei, DENG Shijie, FENG Xiang. Chloride Ion Transport in Concrete of Ballastless Track under Fatigue Loading[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 510-516. doi: 10.3969/j.issn.0258-2724.20190690

Chloride Ion Transport in Concrete of Ballastless Track under Fatigue Loading

doi: 10.3969/j.issn.0258-2724.20190690
  • Received Date: 13 Jul 2019
  • Rev Recd Date: 14 Nov 2019
  • Available Online: 06 Dec 2019
  • Publish Date: 15 Jun 2021
  • The chloride ion penetration resistance of concrete structure of ballastless track under fatigue load is one of the main factors affecting its service performance. In order to analyze the variation of chloride ion transport in concrete under fatigue load, the bending fatigue loading test of concrete specimens immersed in chloride solution was carried out. A two-field coupling model based on the structural mechanics field and the chloride transport field was then established with COMSOL finite element software to simulate the chloride diffusion behavior in concrete. The results show that when the erosion time is 2 d, the chloride ion diffusion depths corresponding to the stress levels of 0.3, 0.5, and 0.7 are 7, 11 and 16 mm, respectively, which indicates that the chloride diffusion depth in concrete increases with an increase in fatigue stress level. The chloride ion concentration calculated by the two-field coupling finite element model is basically consistent with the experimental test results, which proves that the model is reasonable. What’s more, the diffusion depth of chloride in concrete increases with the erosion time, and the relationship between them can be described well by a unary quadratic polynomial.

     

  • 钟丽娟,黄庆华,顾祥林,等. 盐雾环境下混凝土中氯离子侵蚀加速试验的综述[J]. 结构工程师,2009,25(3): 144-149. doi: 10.3969/j.issn.1005-0159.2009.03.028

    ZHONG Lijuan, HUANG Qinhua, GU Xianglin, et al. Analysis of accelerated chloride penetration tests for concrete in salt-fog environment[J]. Structural Engineers, 2009, 25(3): 144-149. doi: 10.3969/j.issn.1005-0159.2009.03.028
    孙培华. 循环荷载作用下混凝土渗透性试验研究[D]. 大连: 大连理工大学, 2012.
    YOON S, WANG K J, WEISS W J, et al. Interaction between loading,corrosion,and serviceability of reinforced concrete[J]. ACI Material Journal, 2000, 97(6): 637-644.
    CASTEL A, FRANCY O, FRANCOIS R, et al. Chloride diffusion in reinforced concrete beam under sustained loading[C]//CANMET/ACI Fifth International Conference on Recent Advances in Concrete Technology. Singapore: ACI SP, 2001: 647-662.
    AHN W, REDDY D V. Galvanostatic testing for the durability of marine concrete under fatigue loading[J]. Cement and Concrete Research, 2001, 31(3): 343-349. doi: 10.1016/S0008-8846(00)00506-8
    SAMAHA H R, HOVER K C. Influence of microcracking on the mass transport properties of concrete[J]. ACI Material Journal, 1992, 89(4): 416-424.
    SATIO M, LSHIMORI H. Choride permeability of concrete under static and repeated compressive loading[J]. Cement and Concrete Research, 1995, 25(4): 803-808. doi: 10.1016/0008-8846(95)00070-S
    李炜,蒋林华,王永亮,等. 疲劳作用对混凝土中氯离子扩散系数影响的研究[J]. 混凝土,2014(1): 31-34. doi: 10.3969/j.issn.1002-3550.2014.01.009

    LI Wei, JIANG Linhua, WANG Yongliang, et al. Research on the effect of fatigue on chloride diffusion coefficient in concrete[J]. Concrete, 2014(1): 31-34. doi: 10.3969/j.issn.1002-3550.2014.01.009
    孙伟,蒋金洋,王晶,等. 弯曲疲劳载荷作用下HPC和HPFRCC抗氯离子扩散性能研究[J]. 中国材料进展,2009,28(11): 19-25,53.

    SUN Wei, JIANG Jinyang, WANG Jing, et al. Resistance to chloride ion diffusion of HPC and HPFRCC under bending fatigue load[J]. Materials China, 2009, 28(11): 19-25,53.
    苏林王,蔡健,刘培鸽,等. 盐雾环境与交变荷载下混凝土梁的试验研究[J]. 华南理工大学学报(自然科学版),2017,45(5): 97-104. doi: 10.3969/j.issn.1000-565X.2017.05.014

    SU Linwang, CAI Jian, LIU Peige, et al. Experimental investigation into RC beam under the action of alternating load in salt-spray environment[J]. Journal of South China University of Technology (Natural Science Edition), 2017, 45(5): 97-104. doi: 10.3969/j.issn.1000-565X.2017.05.014
    於德美. 疲劳荷载与环境耦合作用下混凝土氯离子传输行为及模型研究[D]. 长安: 长安大学, 2017.
    柳磊,吕毅刚,禹卓杰,等. 疲劳荷载与氯盐耦合作用下混凝土中氯离子扩散行为的试验研究[J]. 实验力学,2017,32(4): 517-524. doi: 10.7520/1001-4888-17-141

    LIU Lei, LV Yigang, YU Zhuojie, et al. Experimental study on diffusion behavior of chloride ion in concrete subjected to fatigue loading[J]. Journal of Experimental Mechanics, 2017, 32(4): 517-524. doi: 10.7520/1001-4888-17-141
    王丹, 刘子键, 郑晓宁, 等. 海水干湿循环下疲劳损伤钢筋混凝土梁氯离子扩散试验研究[J]. 建筑结构学报, 2015, 36(增刊2): 250-256.

    WANG Dan, LIU Zijian, ZHENG Xiaoning, et al. Experimental study on chloride ion diffusion of fatigue damaged RC beams in seawater wet-dry cycles[J]. Journal of Building Structures, 2015, 36(S2): 250-256.
    段一鸣. 盐雾与疲劳耦合下预应力箱梁氯离子扩散特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.
    禹卓杰. 疲劳荷载作用下混凝土中氯离子渗透性能研究[D]. 长沙: 长沙理工大学, 2017.
    ZHANG W M, BA H, CHEN S. Effect of fly ash and repeated loading on diffusion coefficient in chloride migration test[J]. Construction and Building Materials, 2011, 25(5): 2269-2274. doi: 10.1016/j.conbuildmat.2010.11.016
    NAKHI A E, XI Y, WILLAN K, et al. The effect of fatigue loading on chloride penetration in non-saturated concrete[C]//European Congress on Computational Methods in Applied Sciences and Engineering. Barcelona: [s.n.], 2000: 1-8.
    刘丹. 振动荷载下无砟轨道耐久性特性与疲劳耐久性预测研究[D]. 成都: 西南交通大学, 2017.
    中华人民共和国交通部. 水运工程混凝土试验规则: JTJ 270—98[S]. 北京: 人民交通出版社, 1999.
    REN J J, DENG S J, WEI K, et al. Mechanical property deterioration of the prefabricated concrete slab in mixed passenger and freight railway tracks[J]. Construction and Building Materials, 2019, 208: 622-637. doi: 10.1016/j.conbuildmat.2019.03.039
    BENTZ D P, GARBOCZI E J. Modeling the leaching of calcium hydroxide from cement paste-effects on pore-space percolation and diffusivity[J]. Materials and Structures, 1992, 25(9): 523-533.
    KASSIR M K, GHOSN M. Chloride-induced corrosion of reinforced concrete bridge decks[J]. Cement and Concrete Research, 2002, 32(1): 139-14. doi: 10.1016/S0008-8846(01)00644-5
  • Relative Articles

    [1]HUANG Zhichao, ZHANG Zongyu, SU Qian, WANG Xun, HUANG Junjie, ZHAO Wenhui. Dynamic Characteristic Analysis of Basalt Fiber Foam Concrete Subgrade for Ballastless Track[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240142
    [2]ZHAO Haitao, DING Jian, YANG Guo, XIANG Yu, XU Wen, CHEN Yuzhi. Experimental Investigation of Relative Humidity Response in Early-Age Concrete Under Tensile Stress[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1104-1112. doi: 10.3969/j.issn.0258-2724.20220134
    [3]YANG Rongshan, CHEN Jian, WANG Yuanhao, GAO Ziyuan, LI Ying, CAO Shihao. Experimental Design of Hydrodynamic Pressure in Ballastless Track Crack[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 414-420. doi: 10.3969/j.issn.0258-2724.20220342
    [4]MA Junjun, LIN Pengzhen, LIU Yinglong, HE Zhigang. Simulation and Analysis of Chloride Ion Diffusion in Cracked Concrete Based on Cellular Automata[J]. Journal of Southwest Jiaotong University, 2022, 57(2): 360-368. doi: 10.3969/j.issn.0258-2724.20210359
    [5]GAO Liang, ZHAO Wenqiang, ZHONG Yanglong, TONG Fengzhuang. Checking and Analysis of Reinforcement Arrangement Scheme for Slab Track Based on Comprehensive Index Method[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 500-509. doi: 10.3969/j.issn.0258-2724.20190358
    [6]WU Xiaomei, GAO Qiang, DING Hao, FAN Yueming. Flexural Fatigue Performance of Concrete Prepared with Low-Heat Portland Cement[J]. Journal of Southwest Jiaotong University, 2019, 54(2): 313-318. doi: 10.3969/j.issn.0258-2724.20160817
    [7]REN Juanjuan, DENG Shijie, YAN Yafei, DU Wei, NI Yuefeng. Influence of Train Load on Mechanical Property of Prefabricated Slab Track[J]. Journal of Southwest Jiaotong University, 2019, 54(6): 1210-1218. doi: 10.3969/j.issn.0258-2724.20170642
    [8]LIU Xiaochun, JIN Cheng, YU Zhiwu, HE Chen, YANG Yiyi. Fatigue Testing of CRTS Ⅲ Ballastless Slab Track Structures under Transverse Bending[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 23-30. doi: 10.3969/j.issn.0258-2724.2018.01.003
    [9]LIU Xueyi, LI Jiali, KANG Weixin, LIU Xiaokai, YANG Rongshan. Simplified Calculation of Temperature in Concrete Slabs of Ballastless Track and Influence of Extreme Weather[J]. Journal of Southwest Jiaotong University, 2017, 30(6): 1037-1045,1060. doi: 10.3969/j.issn.0258-2724.2017.06.001
    [10]LIAO Hongjian, ZHU Qingnü, ZAN Yuewen, XIE Yongyong, SUN Junyu. Detection of Ballastless Track Diseases in High-Speed Railway Based on Ground Penetrating Radar[J]. Journal of Southwest Jiaotong University, 2016, 29(1): 8-13. doi: 10.3969/j.issn.0258-2724.2016.01.002
    [11]CAO Shihao, YANG Rongshan, LIU Xueyi, SU Chengguang, GUO Likang. Analysis of Water Pressure in Ballastless Track Crack[J]. Journal of Southwest Jiaotong University, 2016, 29(1): 36-42. doi: 10.3969/j.issn.0258-2724.2016.01.006
    [12]REN Juanjuan, YAN Xiaobo, XU Guanghui, XU Kun. Effects of Contact Loss underneath Concrete Roadbed on Dynamic Performances of Slab Track-Subgrade System[J]. Journal of Southwest Jiaotong University, 2014, 27(6): 961-966. doi: 10.3969/j.issn.0258-2724.2014.06.005
    [13]XU Guihong, LIU Xueyi, YANG Rongshan, YANG Junbin. Reasons for Displacement of Ballastless Track Slab during Self-Compacting Concrete Pouring[J]. Journal of Southwest Jiaotong University, 2013, 26(1): 42-46. doi: 10.3969/j.issn.0258-2724.2013.01.007
    [14]WEI Qiang, ZHAO Guo-Tang, GAO Yong-Jie, CAO Xiao-Pei, FU Qi-Zhang. Experimental Research of Anchored System for Longitudinal Connected Ballastless Track in High-Speed Railway[J]. Journal of Southwest Jiaotong University, 2011, 24(4): 553-558. doi: 10.3969/j.issn.0258-2724.2011.04.005
    [15]JIANG Guanlu, KONG Xianghui, MENG Liji, WANG Zhimeng. Dynamic Characteristics of Soil Subgrade Bed for Ballastless Track[J]. Journal of Southwest Jiaotong University, 2010, 23(6): 855-862. doi: 10.3969/j.issn.0258-2724.2010.06.006
    [16]CAI Cheng-Biao, XU Peng. Dynamic Analysis of Key Design Parameters for Ballastless Track of High-Speed Railway[J]. Journal of Southwest Jiaotong University, 2010, 23(4): 493-497. doi: 10. 3969/ j. issn. 0258-2724.
    [17]LIN Hongsong, LI Peigang, YAN Hua, LIU Xueyi. Mechanical Analysis of Ballastless Track with Damaged Cracks under Train Load[J]. Journal of Southwest Jiaotong University, 2010, 23(6): 904-908. doi: 10.3969/j.issn.0258-2724.2010.06.014
    [18]WEI Xing, LI Jun, QIANG Shizhong, LIU Dejun. Fatigue Load for Semi-rigid Connection of Rail Floor Beam of Long-Span Steel Truss Arch Bridges[J]. Journal of Southwest Jiaotong University, 2008, 21(5): 660-665.
  • Cited by

    Periodical cited type(5)

    1. 张伟杰,盛广侠,王兰心,王赟程,王立国,刘志勇,蒋金洋,张嘉文. 复杂服役环境下无砟轨道水泥基材料性能演变的研究综述. 材料导报. 2024(22): 143-160 .
    2. 冯博,刘青,钱永久. 高性能混凝土在氯盐侵蚀和冻融循环作用下的耐久性分析. 西南交通大学学报. 2023(05): 1083-1089 . 本站查看
    3. 苗帅杰,钟阳龙,高亮,蔡小培,肖一雄,张芷寒. 列车循环荷载下完全装配式无砟轨道结构疲劳性能试验研究. 中南大学学报(自然科学版). 2023(12): 4933-4945 .
    4. 任娟娟,张书义,许雪山,杜俊宏,杜威. 寒区无砟轨道服役性能演化与提升技术研究进展. 中国铁路. 2022(08): 76-87 .
    5. 杨志强,李化建,温家馨,黄法礼,王振,易忠来. 疲劳荷载作用下无砟轨道混凝土轨道板氯离子传输与服役寿命. 铁道建筑. 2022(12): 24-29 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-062025-0705101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 45.0 %FULLTEXT: 45.0 %META: 52.7 %META: 52.7 %PDF: 2.3 %PDF: 2.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.5 %其他: 3.5 %其他: 0.2 %其他: 0.2 %United States: 0.2 %United States: 0.2 %上海: 0.6 %上海: 0.6 %临汾: 0.4 %临汾: 0.4 %保定: 0.2 %保定: 0.2 %兰州: 0.2 %兰州: 0.2 %北京: 3.1 %北京: 3.1 %十堰: 0.2 %十堰: 0.2 %南京: 1.5 %南京: 1.5 %南通: 0.4 %南通: 0.4 %哈尔滨: 0.2 %哈尔滨: 0.2 %哥伦布: 0.4 %哥伦布: 0.4 %大连: 0.2 %大连: 0.2 %大阪: 0.2 %大阪: 0.2 %天津: 0.8 %天津: 0.8 %宣城: 0.2 %宣城: 0.2 %延安: 0.2 %延安: 0.2 %张家口: 2.7 %张家口: 2.7 %成都: 4.2 %成都: 4.2 %成都市郫都区: 0.2 %成都市郫都区: 0.2 %扬州: 1.2 %扬州: 1.2 %晋中: 0.2 %晋中: 0.2 %杭州: 0.4 %杭州: 0.4 %池州: 2.1 %池州: 2.1 %泸州: 0.2 %泸州: 0.2 %洛阳: 0.2 %洛阳: 0.2 %温州: 0.4 %温州: 0.4 %漯河: 1.9 %漯河: 1.9 %石家庄: 1.9 %石家庄: 1.9 %芒廷维尤: 19.4 %芒廷维尤: 19.4 %衡阳: 0.2 %衡阳: 0.2 %西宁: 48.1 %西宁: 48.1 %西安: 0.2 %西安: 0.2 %贵阳: 0.6 %贵阳: 0.6 %运城: 1.0 %运城: 1.0 %邯郸: 0.4 %邯郸: 0.4 %长沙: 1.7 %长沙: 1.7 %雷德蒙德: 0.2 %雷德蒙德: 0.2 %青岛: 0.2 %青岛: 0.2 %其他其他United States上海临汾保定兰州北京十堰南京南通哈尔滨哥伦布大连大阪天津宣城延安张家口成都成都市郫都区扬州晋中杭州池州泸州洛阳温州漯河石家庄芒廷维尤衡阳西宁西安贵阳运城邯郸长沙雷德蒙德青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article views(564) PDF downloads(14) Cited by(8)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return