• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 58 Issue 5
Oct.  2023
Turn off MathJax
Article Contents
LIANG Jun, GENG Haoran, CHEN Long, YU Bin, LU Guangquan. Integrated Heterogeneous Traffic Flow Model of Bus and Autonomous Vehicle Platoon[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1090-1099. doi: 10.3969/j.issn.0258-2724.20220313
Citation: LIANG Jun, GENG Haoran, CHEN Long, YU Bin, LU Guangquan. Integrated Heterogeneous Traffic Flow Model of Bus and Autonomous Vehicle Platoon[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1090-1099. doi: 10.3969/j.issn.0258-2724.20220313

Integrated Heterogeneous Traffic Flow Model of Bus and Autonomous Vehicle Platoon

doi: 10.3969/j.issn.0258-2724.20220313
  • Received Date: 28 Apr 2022
  • Rev Recd Date: 08 Sep 2022
  • Available Online: 12 May 2023
  • Publish Date: 21 Sep 2022
  • In order to investigate the heterogeneous traffic flow characteristics formed by the combination of connected autonomous vehicles (CAVs) and human-pilot vehicles (HPVs), as well as the impact of bus driving behavior on this environment, four following modes in heterogeneous traffic flow are initially analyzed: human-pilot car following, human-pilot bus following, adaptive cruise control (ACC) following, and cooperative adaptive cruise control (CACC) following. Subsequently, based on the characteristics of each following model, a cellular automaton model for vehicle following and lane-changing is constructed, which comprehensively considers the characteristics of CAV platoons, the response time characteristics of drivers and CAVs, and the cutting-in behavior of HPVs. By setting the following mode judgment parameters, different following mode characteristics are integrated to achieve a unified model representation. Lastly, through simulation experiments, the queuing intensity of CAVs at different penetration rates and the impact of bus lane-changing behavior on traffic flow are analyzed. The results indicate that promoting CAVs to form platoons at a certain penetration rate is more effective in improving road traffic efficiency than merely increasing the CAV penetration rate; a moderate amount of bus lane-changing contributes to the full utilization of road traffic capacity, while excessive bus lane-changing hinders normal traffic. The traffic efficiency attenuation caused by bus lane-changing decreases as the CAV penetration rate increases; under synchronized flow conditions, the execution rate of human-pilot cars is negatively correlated with road traffic efficiency; however, under congested flow conditions, the impact of human-pilot car execution rate on traffic efficiency is negligible.

     

  • loading
  • [1]
    徐志刚,李金龙,赵祥模,等. 智能公路发展现状与关键技术[J]. 中国公路学报,2019,32(8): 1-24. doi: 10.19721/j.cnki.1001-7372.2019.08.001

    XU Zhigang, LI Jinlong, ZHAO Xiangmo, et al. A review on intelligent road and its related key technologies[J]. China Journal of Highway and Transport, 2019, 32(8): 1-24. doi: 10.19721/j.cnki.1001-7372.2019.08.001
    [2]
    李克强,戴一凡,李升波,等. 智能网联汽车(ICV)技术的发展现状及趋势[J]. 汽车安全与节能学报,2017,8(1): 1-14. doi: 10.3969/j.issn.1674-8484.2017.01.001

    LI Keqiang, DAI Yifan, LI Shengbo, et al. State-of-the-art and technical trends of intelligent and connected vehicles[J]. Journal of Automotive Safety and Energy, 2017, 8(1): 1-14. doi: 10.3969/j.issn.1674-8484.2017.01.001
    [3]
    DONG C Q, CHEN X W, DONG H B, et al. Research on intelligent vehicle infrastructure cooperative system based on Zigbee[C]//The 5th International Conference on Transportation Information and Safety (ICTIS). Liverpool: IEEE, 2019: 1337-1343.
    [4]
    RIOS-TORRES J, MALIKOPOULOS A A. A survey on the coordination of connected and automated vehicles at intersections and merging at highway on-ramps[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 18(5): 1066-1077.
    [5]
    LEE H, SONG T, YOON Y, et al. Development of a longitudinal control algorithm based on V2V communication for ensuring takeover time of autonomous vehicle[J]. Journal of Auto-Vehicle Safety Association, 2020, 12(1): 15-25.
    [6]
    WANG W S, LIANG J, PAN C F, et al. NLS based hierarchical anti-disturbance controller for vehicle platoons with time-varying parameter uncertainties[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(11): 21062-21073. doi: 10.1109/TITS.2022.3178731
    [7]
    FAKHRMOOSAVI F, SAEDI R, ZOCKAIE A, et al. Impacts of connected and autonomous vehicles on traffic flow with heterogeneous drivers spatially distributed over large-scale networks[J]. Transportation Research Record: Journal of The Transportation Research Board, 2020, 2674(10): 817-830. doi: 10.1177/0361198120940997
    [8]
    TALEBPOUR A, MAHMASSANI H S, HAMDAR S H. Modeling lane-changing behavior in a connected environment: a game theory approach[J]. Transportation Research Procedia, 2015, 7: 420-440. doi: 10.1016/j.trpro.2015.06.022
    [9]
    SALA M, SORIGUERA F. Capacity of a freeway lane with platoons of autonomous vehicles mixed with regular traffic[J]. Transportation Research Part B: Methodological, 2021, 147: 116-131. doi: 10.1016/j.trb.2021.03.010
    [10]
    ZHOU Y J, ZHU H B, GUO M M, et al. Impact of CACC vehicles’ cooperative driving strategy on mixed four-lane highway traffic flow[J]. Physica A: Statistical Mechanics and Its Applications, 2020, 540: 122721.1-122721.13.
    [11]
    LI S K, LIU R H, YANG L X, et al. Robust dynamic bus controls considering delay disturbances and passenger demand uncertainty[J]. Transportation Research Part B: Methodological, 2019, 123: 88-109. doi: 10.1016/j.trb.2019.03.019
    [12]
    YANG S J, SI C W, ZHI H Y, et al. A cellular automata model for mixed traffic flow considering the driving behavior of connected automated vehicle platoons[J]. Physica A: Statistical Mechanics and Its Applications, 2021, 582: 126262.1-126262.18.
    [13]
    CHEN J Z, LIANG H, LI J, et al. A novel distributed cooperative approach for mixed platoon consisting of connected and automated vehicles and human-driven vehicles[J]. Physica A: Statistical Mechanics and Its Applications, 2021, 573: 125939.1-125939.17.
    [14]
    李霞,汪一戈,崔洪军,等. 智能网联环境下复杂异质交通流稳定性解析[J]. 交通运输系统工程与信息,2020,20(6): 114-120. doi: 10.16097/j.cnki.1009-6744.2020.06.015

    LI Xia, WANG Yige, CUI Hongjun, et al. Stability analysis of complex heterogeneous traffic flow under connected and autonomous environment[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(6): 114-120. doi: 10.16097/j.cnki.1009-6744.2020.06.015
    [15]
    GIPPS P G. A behavioural car-following model for computer simulation[J]. Transportation Research Part B: Methodological, 1981, 15(2): 105-111. doi: 10.1016/0191-2615(81)90037-0
    [16]
    中华人民共和国住房和城乡建设部. 车库建筑设计规范: JGJ 100—2015[S]. 北京: 中国建筑工业出版社, 2015.
    [17]
    KERNER B S. Introduction[M]//Introduction to modern traffic flow theory and control. Berlin: Springer, 2009: 1-6.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article views(430) PDF downloads(48) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return