• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
ZHAO Renda, YANG Shiyu, JIA Wentao, ZENG Xianshuai, JIN Hesong, LI Fuhai. Review of Recent Progress in Durability of Fly Ash Based Geopolymer Concrete[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 1065-1074. doi: 10.3969/j.issn.0258-2724.20190993
Citation: ZHAO Renda, YANG Shiyu, JIA Wentao, ZENG Xianshuai, JIN Hesong, LI Fuhai. Review of Recent Progress in Durability of Fly Ash Based Geopolymer Concrete[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 1065-1074. doi: 10.3969/j.issn.0258-2724.20190993

Review of Recent Progress in Durability of Fly Ash Based Geopolymer Concrete

doi: 10.3969/j.issn.0258-2724.20190993
  • Received Date: 16 Oct 2019
  • Rev Recd Date: 16 Mar 2020
  • Available Online: 20 Mar 2020
  • Publish Date: 15 Oct 2021
  • Geopolymer is a new type of chemically activited cementitious material which has been actively investigated across the world for more than 10 years. It may become a green cementitious material to replace cement. In view of the relatively weak durability of alkali activated fly ash (AAFA) geopolymer, recent research progress in AAFA geopolymer based concrete worldwide is systematically reviewed in terms of carbonation resistance, freeze-thaw resistance, chloride ion penetration resistance, acid and sulfate resistance, and weathering resistance. Literature survey results can be summarized as follows: 1) Compared with ordinary Portland concrete (OPC), the anti-carbonization ability of AAFA concrete is weaker, so the carbonized AAFA concrete has an increased porosity and decreased mechanical properties. High temperature curing and addition of Ca(OH)2, OPC cement, ground granulated blast furnace slag (BFS) and nano-TiO2 can improve the carbonation resistance of the AAFA concrete. 2) The freeze-thaw resistance of AAFA concrete is generally low. Adding BFS and metakaolin can improve the freeze-thaw resistance of AAFA concrete. 3) Compared with OPC, AAFA concrete has higher Cl- permeability, and the addition of BFS, lower liquid-solid ratio, high temperature curing, and prolonging curing time can improve the Cl permeability performance of AAFA concrete. 4) AAFA concrete has strong resistance to sulfuric acid, hydrochloric acid, nitric acid, acetic acid and sulfate, and has low water absorption. 5) The efflorescence resistance of AAFA is relatively weak. This is closely related to porosity. Extending the heat curing time, adding aluminum-rich additives, lowering the target sodium to aluminum molar ratio, reducing the water content of the geopolymer, adding nano-SiO2 and silane surface modification can improve the efflorescence resistance of the AAFA concrete.

     

  • LAW D W, ADAM A A, MOLYNEAUX T K, et al. Long term durability properties of class F fly ash geopolymer concrete[J]. Materials and Structures, 2015, 48(3): 721-31. doi: 10.1617/s11527-014-0268-9
    DAVIDOVIT S J. Green chemistry and sustainable development solutions[C]//Geopolymer, Green Chemistry and Sustainable Development Solutions: Proceedings of the World Congress Geopolymer 2005. Perancis: Geopolymer Institute, 2005: 9-15.
    BADAR M S, KUPWADE-PATIL K, BERNAL S A, et al. Corrosion of steel bars induced by accelerated carbonation in low and high calcium fly ash geopolymer concretes[J]. Construction and Building Materials, 2014, 61: 79-89. doi: 10.1016/j.conbuildmat.2014.03.015
    BERNAL S A, PROVIS J L, WALKLEY B, et al. Gel nanostructure in alkali-activated binders based on slag and fly ash,and effects of accelerated carbonation[J]. Cement and Concrete Research, 2013, 53: 127-144. doi: 10.1016/j.cemconres.2013.06.007
    PASUPATHY K, BERNDT M, SANJAYAN J, et al. Durability of low-calcium fly ash based geopolymer concrete culvert in a saline environment[J]. Cement and Concrete Research, 2017, 100: 297-310. doi: 10.1016/j.cemconres.2017.07.010
    CRIADO M, PALOMO A, FERNÁNDEZ-JIMÉNEZ A. Alkali activation of fly ashes. part 1:effect of curing conditions on the carbonation of the reaction products[J]. Fuel Guildford, 2005, 84(16): 2048-2054. doi: 10.1016/j.fuel.2005.03.030
    PASUPATHY K, BERNDT M, CASTEL A, et al. Carbonation of a blended slag-fly ash geopolymer concrete in field conditions after 8 years[J]. Construction and Building Materials, 2016, 125: 661-669. doi: 10.1016/j.conbuildmat.2016.08.078
    KHAN M S H, CASTEL A, NOUSHINI A. Carbonation of a low-calcium fly ash geopolymer concrete[J]. Magazine of Concrete Research, 2017, 69(1): 24-34. doi: 10.1680/jmacr.15.00486
    WANG Q, DA J, ZHANG C B, et al. Influence of composition on the corrosion of steel bar of reinforced geopolymer concrete[J]. Applied Mechanics and Materials, 2012, 1620: 536-541. doi: 10.4028/www.scientific.net/AMM.152-154.536
    HUANG G, JI Y, LI J, et al. Use of slaked lime and Portland cement to improve the resistance of MSWI bottom ash-GBFS geopolymer concrete against carbonation[J]. Construction and Building Materials, 2018, 166: 290-300. doi: 10.1016/j.conbuildmat.2018.01.089
    DUAN P, YAN C, LUO W, et al. Effects of adding nano-TiO2 on compressive strength,drying shrinkage,carbonation and microstructure of fluidized bed fly ash based geopolymer paste[J]. Construction and Building Materials, 2016, 106: 115-125. doi: 10.1016/j.conbuildmat.2015.12.095
    ADAM A, MOLYNEAUX T, PATNAIKUNI I, et al. Chloride penetration and carbonation in blended OPC-GGBS, alkali activated slag, and fly ash based geopolymer concrete[C]//Proceedings of the Concrete 09, 24th Biennial Conference of Concrete Institute of Australia. Sydney: Concrete Institute of Australia, 2009: 17-19.
    ADAM A, MOLYNEAUX T, PATNAIKUNI I, et al. Challenges, opportunities and solutions in structural engineering and construction[M]. Las Vegas: CRC Press, 2010: 563-568.
    LI Z G, LI S. Carbonation resistance of fly ash and blast furnace slag based geopolymer concrete[J]. Construction and Building Materials, 2018, 163: 668-680. doi: 10.1016/j.conbuildmat.2017.12.127
    ZHAO R, YUAN Y, CHENG Z, et al. Freeze-thaw resistance of class F fly ash-based geopolymer concrete[J]. Construction and Building Materials, 2019, 222: 474-483. doi: 10.1016/j.conbuildmat.2019.06.166
    VÁCHAL T, ŠULC R, SVOBODA P. Freeze-thaw resistance with sodium chloride solution of fly-ash concrete mixtures[J]. Advanced Materials Research, 2015, 1124: 137-144. doi: 10.4028/www.scientific.net/AMR.1124.137
    SUN P, WU H C. Chemical and freeze-thaw resistance of fly ash-based inorganic mortars[J]. Fuel, 2013, 111: 740-745. doi: 10.1016/j.fuel.2013.04.070
    CAI L, WANG H, FU Y. Freeze–thaw resistance of alkali-slag concrete based on response surface methodology[J]. Construction and Building Materials, 2013, 49: 70-76. doi: 10.1016/j.conbuildmat.2013.07.045
    SHAHRAJABIAN F, BEHFARNIA K. The effects of nano particles on freeze and thaw resistance of alkali-activated slag concrete[J]. Construction and Building Materials, 2018, 176: 172-178. doi: 10.1016/j.conbuildmat.2018.05.033
    LI Q, CAI L, FU Y, et al. Fracture properties and response surface methodology model of alkali-slag concrete under freeze–thaw cycles[J]. Construction and Building Materials, 2015, 93: 620-626. doi: 10.1016/j.conbuildmat.2015.06.037
    LI Q. Fracture theory under freeze-thaw cycles and freeze-thaw resistance of alkali-slag concrete[M]. New York: IntechOpen, 2016: 43-62.
    FU Y, CAI L, WU Y. Freeze-thaw cycle test and damage mechanics models of alkali-activated slag concrete[J]. Construction and Building Materials, 2011, 25(7): 3144-3148. doi: 10.1016/j.conbuildmat.2010.12.006
    GIFFORD P M, GILLOTT J E. Freeze-thaw durability of activated blast furnace slag cement concrete[J]. ACI Materials Journal, 1996, 93(3): 242-245.
    ALLAHVERDI A, ABADI M, HOSSAIN K, et al. Resistance of chemically-activated high phosphorous slag content cement against freeze–thaw cycles[J]. Cold Regions Science and Technology, 2014, 103: 107-114. doi: 10.1016/j.coldregions.2014.03.012
    ZHAO M, ZHANG G, HTET K W, et al. Freeze-thaw durability of red mud slurry-class F fly ash-based geopolymer:Effect of curing conditions[J]. Construction and Building Materials, 2019, 215: 381-390. doi: 10.1016/j.conbuildmat.2019.04.235
    ZHU H, ZHANG Z, ZHU Y, et al. Durability of alkali-activated fly ash concrete:chloride penetration in pastes and mortars[J]. Construction and Building Materials, 2014, 65: 51-59. doi: 10.1016/j.conbuildmat.2014.04.110
    HALIM L N, EKAPUTRI J J. The influence of salt water on chloride penetration in geopolymer concrete[J]. MATEC Web of Conferences, 2017: 01002.1-01002.5.
    PARTHASARATHY P, HANIF A, SHAO H, et al. microstructural and morphological studies of ordinary portland cement paste and fly ash based geopolymer in the presence of chloride ions[C]//71st RILEM Week and ICACMS 2017-International Conference on Advances in Construction Materials and Systems. Chennai: ACM, 2017: 623-630.
    MONTICELLI C, NATALI M, BALBO A, et al. A study on the corrosion of reinforcing bars in alkali-activated fly ash mortars under wet and dry exposures to chloride solutions[J]. Cement and Concrete Research, 2016, 87: 53-63. doi: 10.1016/j.cemconres.2016.05.010
    CHINDAPRASIRT P, CHALEE W. Effect of sodium hydroxide concentration on chloride penetration and steel corrosion of fly ash-based geopolymer concrete under marine site[J]. Construction and Building Materials, 2014, 63: 303-310. doi: 10.1016/j.conbuildmat.2014.04.010
    NOUSHINI A, CASTEL A, ALDRED J, et al. Chloride diffusion resistance and chloride binding capacity of fly ash-based geopolymer concrete[J]. Cement and Concrete Composites, 2020, 105: 103290.1-103290.6.
    THOMAS R, ARIYACHANDRA E, LEZAMA D, et al. Comparison of chloride permeability methods for alkali-activated concrete[J]. Construction and Building Materials, 2018, 165: 104-111. doi: 10.1016/j.conbuildmat.2018.01.016
    TENNAKOON C, SHAYAN A, SANJAYAN J G, et al. Chloride ingress and steel corrosion in geopolymer concrete based on long term tests[J]. Materials & Design, 2017, 116: 287-299.
    RAJAMANE N, NATARAJA M, LAKSHMANAN N, et al. Rapid chloride permeability test on geopolymer and Portland cement concretes[J]. The Indian Concrete Journal, 2011, 85(10): 21-26.
    LEE N, LEE H K. Influence of the slag content on the chloride and sulfuric acid resistances of alkali-activated fly ash/slag paste[J]. Cement and Concrete Composites, 2016, 72: 168-179. doi: 10.1016/j.cemconcomp.2016.06.004
    YANG T, YAO X, ZHANG Z. Quantification of chloride diffusion in fly ash-slag-based geopolymers by X-ray fluorescence (XRF)[J]. Construction and Building Materials, 2014, 69: 109-115. doi: 10.1016/j.conbuildmat.2014.07.031
    ISMAIL I, BERNAL S A, PROVIS J L, et al. Influence of fly ash on the water and chloride permeability of alkali-activated slag mortars and concretes[J]. Construction and Building Materials, 2013, 48: 1187-1201. doi: 10.1016/j.conbuildmat.2013.07.106
    JUN Y, YOON S, OH J. A comparison study for chloride-binding capacity between alkali-activated fly ash and slag in the use of seawater[J]. Applied Sciences, 2017, 7(10): 971-984. doi: 10.3390/app7100971
    WALLAH S E, HARDJITO D, SUMAJOUW D M, et al. Performance of fly ash based geopolymer concrete under sulfate and acid exposure[C]//Geopolymer, Green Chemistry and Sustainable Development Solutions: Proceedings of the World Congress Geopolymer 2005. Saint Quentin: Geopolymer Institute, 2005: 153-156.
    WALLAH S E, HARDJITO D, SUMAJOUW D M J, et al. Sulfate and acid resistance of fly ash-based geopolymer concrete[C]//Australian Structural Engineering Conference 2005. Sydney: Engineers Australia, 2005: 733-742.
    SATA V, SATHONSAOWAPHAK A, CHINDAPRASIRT P. Resistance of lignite bottom ash geopolymer mortar to sulfate and sulfuric acid attack[J]. Cement and Concrete Composites, 2012, 34(5): 700-708. doi: 10.1016/j.cemconcomp.2012.01.010
    ARIFFIN M, BHUTTA M, HUSSIN M, et al. Sulfuric acid resistance of blended ash geopolymer concrete[J]. Construction and Building Materials, 2013, 43: 80-86. doi: 10.1016/j.conbuildmat.2013.01.018
    IZZAT A M, AL BAKRI A M M, KAMARUDIN H, et al. Microstructural analysis of geopolymer and ordinary Portland cement mortar exposed to sulfuric acid[J]. Materiale Plastice, 2013, 50(3): 171-174.
    SONG X J, MAROSSZEKY M, BRUNGS M, et al. Durability of fly ash based geopolymer concrete against sulphuric acid attack[C]//International Conference On Durability of Building Materials and Components. Lyon: Panini, 2005: 17-20.
    KANNAPIRAN K, SUJATHA T, NAGAN S. Resistance of reinforced geopolymer concrete beams to acid and chloride migration[J]. Asian Journal of Civil Engineering, 2013, 14(2): 225-238.
    AIKEN T A, KWASNY J, SHA W, et al. Effect of slag content and activator dosage on the resistance of fly ash geopolymer binders to sulfuric acid attack[J]. Cement and Concrete Research, 2018, 111: 23-40. doi: 10.1016/j.cemconres.2018.06.011
    MEHTA A, SIDDIQUE R. Sulfuric acid resistance of fly ash based geopolymer concrete[J]. Construction and Building Materials, 2017, 146: 136-143. doi: 10.1016/j.conbuildmat.2017.04.077
    DEB P S, SARKER P K, BARBHUIYA S. Sorptivity and acid resistance of ambient-cured geopolymer mortars containing nano-silica[J]. Cement and Concrete Composites, 2016, 72: 235-245. doi: 10.1016/j.cemconcomp.2016.06.017
    WALLAH S E, HARDJITO D, SUMAJOUW D M J, et al. Geopolymer concrete: a key for better long-term performance and durability[C]//Proc. ICFRC Inter. Conf. on Fiber Composites, High performance Concrete and Smart Materials. Chenni: IOP Publishing, 2004: 527-539.
    CHINDAPRASIRT P, RATTANASAK U, TAEBUANHUAD S. Resistance to acid and sulfate solutions of microwave-assisted high calcium fly ash geopolymer[J]. Materials and Structures, 2013, 46(3): 375-381. doi: 10.1617/s11527-012-9907-1
    NGUYEN K T, LEE Y H, LEE J, et al. Acid resistance and curing properties for green fly ash-geopolymer concrete[J]. Journal of Asian Architecture and Building Engineering, 2013, 12(2): 317-322. doi: 10.3130/jaabe.12.317
    SREEVIDYA V, ANURADHA R, DINAKAR D, et al. Acid resistance of flyash based geopolymer mortar under ambient curing and heat curing[J]. International Journal of Engineering Science and Technology, 2012, 4(2): 681-684.
    SONG X. Development and performance of class F fly ash based geopolymer concretes against sulphuric acid attack[D]. Sydney: The University of New South Wales, 2007.
    TEMUUJIN J, MINJIGMAA A, LEE M, et al. Characterisation of class F fly ash geopolymer pastes immersed in acid and alkaline solutions[J]. Cement and Concrete Composites, 2011, 33(10): 1086-1091. doi: 10.1016/j.cemconcomp.2011.08.008
    THOKCHOM S, GHOSH P, GHOSH S. Durability of fly ash geopolymer mortars in nitric acid-effect of alkali (Na2O) content[J]. Journal of Civil Engineering and Management, 2011, 17(3): 393-399. doi: 10.3846/13923730.2011.594225
    THOKCHOM S. International Journal of Engineering Innovations and Research[J]. International Journal of Engineering Innovations and Research, 2014, 3(6): 943-947.
    THOKCHOM S, GHOSH P, GHOSH S. Resistance of fly ash based geopolymer mortars in sulfuric acid[J]. Asian Research Publishing Network (ARPN), 2009, 4(1): 36-40.
    THOKCHOM S, GHOSH P, GHOSH S. Effect of Na2O content on durability of geopolymer mortars in sulphuric acid[J]. World Academy of Science,Engineering and Technology, 2009, 3: 508-513.
    BAKHAREV T. Resistance of geopolymer materials to acid attack[J]. Cement and Concrete Research, 2005, 35(4): 658-670. doi: 10.1016/j.cemconres.2004.06.005
    DUAN P, YAN C, ZHOU W, et al. An investigation of the microstructure and durability of a fluidized bed fly ash-metakaolin geopolymer after heat and acid exposure[J]. Materials & Design, 2015, 74: 125-137.
    CHINDAPRASIRT P, PAISITSRISAWAT P, RATTANASAK U. Strength and resistance to sulfate and sulfuric acid of ground fluidized bed combustion fly ash-silica fume alkali-activated composite[J]. Advanced Powder Technology, 2014, 25(3): 1087-1093. doi: 10.1016/j.apt.2014.02.007
    LUHAR S, KHANDELWAL U. A study on water absorption and sorptivity of geopolymer concrete[J]. International Journal of Civil Engineering, 2015, 2(8): 1-10.
    FARHANA Z F, KAMARUDIN H, RAHMAT A, et al. The relationship between water absorption and porosity for geopolymer paste[J]. Materials Science Forum, 2014, 803: 166-172. doi: 10.4028/www.scientific.net/MSF.803.166
    MISHRA A, CHOUDHARY D, JAIN N, et al. Effect of concentration of alkaline liquid and curing time on strength and water absorption of geopolymer concrete[J]. Journal of Engineering and Applied Sciences, 2008, 3(1): 14-18.
    NAZARI A, SANJAYAN J G. Hybrid effects of alumina and silica nanoparticles on water absorption of geopolymers:application of taguchi approach[J]. Measurement, 2015, 60: 240-246. doi: 10.1016/j.measurement.2014.10.004
    HUSEIEN G F, MIRZA J, ISMAIL M, et al. The effect of sodium hydroxide molarity and other parameters on water absorption of geopolymer mortars[J]. Indian Journal of Science and Technology, 2016, 9(48): 1-7.
    KUMAR E M, RAMAMURTHY K. Influence of production on the strength,density and water absorption of aerated geopolymer paste and mortar using class F fly ash[J]. Construction and Building Materials, 2017, 156: 1137-1149. doi: 10.1016/j.conbuildmat.2017.08.153
    NAZARI A, RIAHI S. Experimental investigations and ANFIS prediction of water absorption of geopolymers produced by waste ashes[J]. Journal of Non-Crystalline Solids, 2012, 358(1): 40-46. doi: 10.1016/j.jnoncrysol.2011.08.022
    NAZARI A. Experimental study and computer-aided prediction of percentage of water absorption of geopolymers produced by waste fly ash and rice husk bark ash[J]. International Journal of Mineral Processing, 2012, 110: 74-81.
    NAZARI A. Artificial neural networks for prediction of percentage of water absorption of geopolymers produced by waste ashes[J]. Bulletin of Materials Science, 2012, 35(6): 1019-1029. doi: 10.1007/s12034-012-0380-9
    ZHANG Z, PROVIS J L, MA X, et al. Efflorescence and subflorescence induced microstructural and mechanical evolution in fly ash-based geopolymers[J]. Cement and Concrete Composites, 2018, 92: 165-177. doi: 10.1016/j.cemconcomp.2018.06.010
    ZHANG Z, PROVIS J L, REID A, et al. Fly ash-based geopolymers:the relationship between composition,pore structure and efflorescence[J]. Cement and Concrete Research, 2014, 64: 30-41. doi: 10.1016/j.cemconres.2014.06.004
    GHOSH R, GUPTA S K, KUMAR A, et al. Leaching and efflorescence effects in geopolymer concrete[J]. Journal of Metallurgy and Materials Science, 2018, 60(2): 79-88.
    YAO X, YANG T, ZHANG Z. Compressive strength development and shrinkage of alkali-activated fly ash-slag blends associated with efflorescence[J]. Materials and Structures, 2016, 49(7): 2907-2918. doi: 10.1617/s11527-015-0694-3
    YAO X, YANG T, ZHANG Z. Fly ash-based geopolymers:effect of slag addition on efflorescence[J]. Journal of Wuhan University of Technology (Mater. Sci. Ed), 2016, 31(3): 689-694. doi: 10.1007/s11595-016-1430-8
    ZHANG Z, WANG H, PROVIS J L, et al. Efflorescence: a critical challenge for geopolymer applications[C]//Concrete Institute of Australia’s Biennial National Conference 2013. Queensland: Concrete Institute of Australia, 2013: 1-10.
    ŠKVÁRA F, KOPECKÝ L, MYŠKOVÁ L, et al. Aluminosilicate polymers-influence of elevated temperatures,efflorescence[J]. Ceramics-Silikáty, 2009, 53(4): 276-282.
    KIM B, HEO Y E, CHON C M, et al. Influence of Na/Al ratio and curing temperature of geopolymers on efflorescence reduction[J]. Journal of the Korean Institute of Resources Recycling, 2018, 27(6): 59-67.
    ZHANG Z, PROVIS J L, WANG H. Critical thinking on efflorescence in alkali activated cement (AAC)[C]//Proceedings of the International Conference on Performance-based and Life-cycle Structural Engineering. Sydney: Atlantis Press, 2015: 147-153.
    LEE S, CHON C M, KIM B. Effect of geopolymer composition and curing conditions on efflorescence in lightweight porous geopolymers[C]//International Conference on Alkali Activated Materials and Geopolymers: Versatile Materials Offering High Performance and Low Emissions. Tomar: Australian Academic Press, 2018: 76-82.
    WANG J, ZHOU T, XU D, et al. Effect of nano-silica on the efflorescence of waste based alkali-activated inorganic binder[J]. Construction and Building Materials, 2018, 167: 381-390. doi: 10.1016/j.conbuildmat.2018.02.006
    XUE X, LIU Y L, DAI J G, et al. Inhibiting efflorescence formation on fly ash-based geopolymer via silane surface modification[J]. Cement and Concrete Composites, 2018, 94: 43-52. doi: 10.1016/j.cemconcomp.2018.08.013
  • Relative Articles

    [1]LI Fuhai, YANG Zongchi, LIU Gengyuan, LIU Menghui, WU Haonan, CHEN Zhao, LI Guhua. Flexural Performance of PP-ECC Beams Under Coupling of Freeze-Thaw Cycles and Bending Loads[J]. Journal of Southwest Jiaotong University, 2025, 60(1): 53-62. doi: 10.3969/j.issn.0258-2724.20220645
    [2]HE Jingyuan, GAO Weihao, ZHANG Jian, WANG Chuan, LI Zhaofeng, YOU Hao. Freeze-Thaw Resistance of Red Mud-Based Stabilized Crushed Stone[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230350
    [3]CHEN Chenghua, HUANG Zhichao, HUANG Junjie, YANG Chen. Mechanical Property and Frost Resistance Analysis of Foamed Lightweight Soil with Fiber Filament and Mesh Reinforcement[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 462-469. doi: 10.3969/j.issn.0258-2724.20210160
    [4]ZHANG Yunguo, ZHANG Junjun, HAN Yue. Characteristics of Chloride Ion Permeation in Concrete of Type Fracture Crack Propagation[J]. Journal of Southwest Jiaotong University, 2022, 57(5): 1047-1054. doi: 10.3969/j.issn.0258-2724.20200741
    [5]LI Fuhai, HU Dinghan, YU Yongjiang, WANG Jiangshan, JIN Hesong. Experimental Study on Flexural Capacity of PP-ECC Beam[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 272-281. doi: 10.3969/j.issn.0258-2724.20190081
    [6]YUAN Yuan, ZHAO Renda, ZHAN Yulin, LI Fuhai, CHENG Zhengqing, LI Jian. Carbonation Resistance of Fly Ash-Slag Based Geopolymer Concrete[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1275-1282. doi: 10.3969/j.issn.0258-2724.20191151
    [7]WANG Wengjing, ZHANG Zhipeng, LI Guangquan, SONG Chunyuan. Load Characteristics of Anti-rolling Torsion Bar of High-Speed Train[J]. Journal of Southwest Jiaotong University, 2019, 54(6): 1277-1282, 1348. doi: 10.3969/j.issn.0258-2724.20180060
    [8]HUANG Bin, LI Yejun, ZHU Liping, ZHANG Weidong. Effects of Towers Random Sectional Bending Stiffness on Dynamic Characteristics of Large-Span Cable-Stayed Bridge[J]. Journal of Southwest Jiaotong University, 2014, 27(2): 202-207. doi: 10.3969/j.issn.0258-2724.2014.02.003
    [9]MA Jie, ZHAO Jian, ZHAO Yanlin. Destructive Field Test on Properties of Uplift and Compression Piles[J]. Journal of Southwest Jiaotong University, 2013, 26(2): 283-289,296. doi: 10.3969/j.issn.0258-2724.2013.02.015
    [10]ZHANG Wenfang, HE Dake, WANG Hongxia, WANG Xiaomin. Conspiracy Attack Immune(t,n) Threshold Signature Scheme with Traceability[J]. Journal of Southwest Jiaotong University, 2007, 20(4): 461-467.
    [11]ZHOU Lirong, XIANG Bo, ZHOU Depei. In-situ Test of Anti-washing-out of Red-Bed Soft Rock Slope Protected by Plants[J]. Journal of Southwest Jiaotong University, 2006, 19(2): 197-201.
    [12]WANG Zhen-ling, LIN Yong-jun, QIAN Yong-jiu. ExperimentalResearch on Shear Properties of New-to-O ld Concrete Interface[J]. Journal of Southwest Jiaotong University, 2005, 18(5): 600-604.
    [13]ZHOU Ying-hua, ZHOU De-pei, YANG Tao, FENG Zhi-jun. Experimental Investigation on Shear Strength Parameters of Jointed Rock Mass[J]. Journal of Southwest Jiaotong University, 2005, 18(1): 73-76.
    [14]ZHOUJiang-ping, PENG Xiong-zhi. Investigation on Size Effect of Shear Strength of Soil[J]. Journal of Southwest Jiaotong University, 2005, 18(1): 77-81.
    [15]PENG Yong-sheng, WANG Tai-yong, FAN Sheng-bo, WUZhen-yong, WANG Shuang-li. Design of High Quality Anti-aliasing Filter[J]. Journal of Southwest Jiaotong University, 2003, 16(5): 596-601.
    [16]LUHong-lun. Continuum Theory of Mixture for Freezing and Thawing of Water-Saturated Porous Media[J]. Journal of Southwest Jiaotong University, 2001, 14(6): 599-513.
    [17]ZHENG Zhi-ou, ZHENG Shi-ying. A New Type of Bridge Plate Rubber Support Resistant to Lateral Displacement[J]. Journal of Southwest Jiaotong University, 2000, 13(4): 357-360.
  • Cited by

    Periodical cited type(12)

    1. 惠存,马泽亚,杨飞,海然,柳明亮. 不同配箍率钢筋地聚物混凝土梁受剪性能试验研究与分析. 建筑结构. 2025(03): 41-46 .
    2. 姜天华,张淳,万聪聪,李万绪,郑智敏,黄燕南. 地聚物混凝土与既有混凝土界面黏结性能的试验研究. 混凝土与水泥制品. 2025(03): 90-93 .
    3. 蒋新彧,征西遥,吴俊,杨爱武,李博. HNO_3和H_2SO_4侵蚀作用下地质聚合物固化软土的抗酸性能研究. 岩土力学. 2025(03): 851-866 .
    4. 姜天华,王帅,胡宇成. 聚乙烯醇纤维增强地聚物抗硫酸盐侵蚀性能分析及强度预测. 武汉科技大学学报. 2025(03): 185-191 .
    5. 弓扶元,曹万林,王栋民,黄天勇,赵羽习,马敬友. 工业与建筑固废高效利用混凝土及其工程结构防灾研究. 自然灾害学报. 2024(01): 1-18 .
    6. 公晋芳,任永祥. 纤维-地聚物混凝土力学性能及耐久性能研究. 兰州理工大学学报. 2024(02): 24-30 .
    7. 王圣怡,李天歌,周昱程. 环境温度对超高韧性地聚合物复合材料抗冲击性能的影响. 混凝土与水泥制品. 2024(11): 54-59 .
    8. 彭晖,张白. 地聚物混凝土耐久性研究进展. 长沙理工大学学报(自然科学版). 2023(05): 1-24 .
    9. 方明伟,王丹,周枫桃,李荣杰. 碱激发剂对粉煤灰地聚物混凝土的性能影响. 功能材料. 2023(11): 11170-11176 .
    10. 陈瑜,焦雨玲,李永祥,王永杰. 硅烷偶联剂在水泥基材料与地聚合物中的应用进展. 混凝土. 2023(11): 114-120+125 .
    11. 黄成. 碳纳米管和玄武岩纤维对轻质地聚物混凝土结构性能的影响研究. 房地产世界. 2022(24): 21-26 .
    12. 李博琦,谢贤,吕晋芳,朱辉,黎洁,康博文,宋强. 粉煤灰资源化综合利用研究进展及展望. 矿产保护与利用. 2020(05): 153-160 .

    Other cited types(11)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article views(577) PDF downloads(49) Cited by(23)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return