• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 56 Issue 3
Jun.  2021
Turn off MathJax
Article Contents
FAN Xinnan, WANG Jie, SHI Pengfei, LI Min. Pavement Crack Segmentation Algorithm Based on Pulse Coupled Neural Network with Brainstorming Optimization[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 572-578. doi: 10.3969/j.issn.0258-2724.20190354
Citation: FAN Xinnan, WANG Jie, SHI Pengfei, LI Min. Pavement Crack Segmentation Algorithm Based on Pulse Coupled Neural Network with Brainstorming Optimization[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 572-578. doi: 10.3969/j.issn.0258-2724.20190354

Pavement Crack Segmentation Algorithm Based on Pulse Coupled Neural Network with Brainstorming Optimization

doi: 10.3969/j.issn.0258-2724.20190354
  • Received Date: 30 Apr 2019
  • Rev Recd Date: 14 Nov 2019
  • Available Online: 26 Apr 2020
  • Publish Date: 15 Jun 2021
  • In order to improve the segmentation accuracy and robustness of crack detection, a new segmentation algorithm for pavement crack image is proposed on the basis of brain storming optimization (BSO) and pulse coupled neural network (PCNN). This method uses the maximum entropy criterion as the fitness function of the BSO algorithm, and then determines the individuals participating in the next iteration according to the fitness value. Since the BSO algorithm has strong convergence, which is able to quickly determine the optimal individual solution. Combining the image features, the optimal parameters of the model are obtained, which can be substituted into the PCNN model to achieve the segmentation of the crack image. The experimental results show that the maximum fitness value of different road crack images can be obtained within 20 iterations, so as to determine the best segmentation parameters. Compared with traditional crack segmentation algorithms like Sobel, PCNN, genetic algorithm based on the maximun entropy of the histogram (GA-KSW), and genetic algorithm based on the pulse coupled neural network (GA-PCNN), the proposed method achieves a regional consistency accuracy of 0.9924 and a regional contrast of 0.9924 and a regional contrast of 0.0900.

     

  • loading
  • OLIVEIRA H, CORREIA P L. Automatic road crack segmentation using entropy and image dynamic thresholding[C]//Proceedings of the 17th European Signal Processing Conference. New York: IEEE, 2009: 622-626.
    FAN X, WU J, SHI P, et al. A novel automatic dam crack detection algorithm based on local-global clustering[J]. Multimed Tools Applications, 2018, 77(22): 26581-26599.
    徐威,唐振民,吕建勇. 基于图像显著性的路面裂缝检测[J]. 中国图象图形学报,2013,18(1): 70-77.

    XU Wei, TANG Zhenmin, LV Jianyong. Pavement crack detection based on image saliency[J]. Journal of Image and Graphics, 2013, 18(1): 70-77.
    沙爱民,童峥,高杰. 基于卷积神经网络的路表病害识别与测量[J]. 中国公路学报,2018,31(1): 1-10. doi: 10.3969/j.issn.1001-7372.2018.01.001

    SHA Aimin, TONG Zheng, GAO Jie. Recognition and measurement of pavement disasters based on convolutional neural networks[J]. China Journal of Highway and Transport, 2018, 31(1): 1-10. doi: 10.3969/j.issn.1001-7372.2018.01.001
    宋蓓蓓,韦娜. 基于脉冲耦合神经网络的路面裂缝提取[J]. 长安大学学报(自然科学版),2011,31(5): 33-37.

    SONG Beibei, WEI Na. Pavement cracks extraction based on pulse coupled neural network[J]. Journal of Chang’an University (Natural Science Edition), 2011, 31(5): 33-37.
    张坤华,谭志恒,李斌. 结合粒子群优化和综合评价的脉冲耦合神经网络图像自动分割[J]. 光学精密工程,2018,26(4): 962-970. doi: 10.3788/OPE.20182604.0962

    ZHANG Kunhua, TAN Zhiheng, LI bin. Automated image segmentation based on pulse coupled neural[J]. Optics and Precision Engineering, 2018, 26(4): 962-970. doi: 10.3788/OPE.20182604.0962
    周东国,高潮,郭永彩. 一种参数自适应的简化PCNN图像分割方法[J]. 自动化学报,2014,40(6): 1191-1197.

    ZHOU Dongguo, GAO Chao, GUO Yongcai. Adaptive simplified PCNN parameter setting for image segmentation[J]. Acta Automatica Sinica, 2014, 40(6): 1191-1197.
    赵慧洁,葛文谦,李旭东. 最小误差准则与脉冲耦合神经网络的裂缝检测[J]. 仪器仪表学报,2012,33(3): 637-642. doi: 10.3969/j.issn.0254-3087.2012.03.023

    ZHAO Huijie, GE Wenqian, LI Xudong. Detection of crack defect based on minimum error and pulse coupled neural networks[J]. Chinese Journal of Scientific Instrument, 2012, 33(3): 637-642. doi: 10.3969/j.issn.0254-3087.2012.03.023
    宰柯楠,徐江峰. 基于遗传算法和简化PCNN的裂缝检测方法[J]. 计算机应用研究,2017,34(6): 1885-1888. doi: 10.3969/j.issn.1001-3695.2017.06.065

    ZAI Kenan, XU Jiangfeng. Method of crack detection based on genetic algorithm and simplified pulse coupled neural network[J]. Application Research of Computers, 2017, 34(6): 1885-1888. doi: 10.3969/j.issn.1001-3695.2017.06.065
    杨玉婷,史玉回,夏顺仁. 基于讨论机制的BSO算法[J]. 浙江大学学报(工学版),2013,47(10): 1705-1711.

    YANG Yuting, SHI Yuhui, XIA Shunren. Discussion mechanism based brain storm optimization algorithm[J]. Journal of Zhejiang University (Engineering Science), 2013, 47(10): 1705-1711.
    CHENG S, QIN Q, CHEN J, et al. Brain storm optimization algorithm:a review[J]. Artificial Intelligence Review, 2016, 46(4): 445-458. doi: 10.1007/s10462-016-9471-0
    CHENG S, SHI Y, QIN Q, et al. Maintaining population diversity in brain storm optimization algorithm[C]//Proceedings of the IEEE Congress on Evolutionary Computation. New York: IEEE, 2014: 3230-3237.
    MAFTEIU-SCAI L O. A new approach for solving equations systems inspired from brainstorming[J]. International Journal of New Computer Architectures and their Applications, 2015, 5(1): 10-18. doi: 10.17781/P001642
    LI J, DUAN H. Simplified brain storm optimization approach to control parameter optimization in F/A-18 automatic carrier landing system[J]. Aerospace Science and Technology, 2015, 42: 187-195. doi: 10.1016/j.ast.2015.01.017
    ZHOU H, JIANG M, BEN X. Niche brain storm optimization algorithm for multi-peak function optimization[J]. Advanced Materials Research, 2014, 989/990/991/992/993/994: 1626-1630. doi: 10.4028/www.scientific.net/AMR.989-994.1626
    GUO X, WU Y, XIE L, et al. An adaptive brain storm optimization algorithm for multiobjective optimization problems[C]//International Conference in Swarm Intelligence. Cham: Springer, 2015: 365-372.
    杨玉婷,段丁娜,张欢,等. 基于改进头脑风暴优化算法的隐马尔可夫模型运动识别[J]. 航天医学与医学工程,2015,28(6): 403-407.

    YANG Yuting, DUAN Dingna, ZHANG Huan, et al. Motion recognition based on hidden Markov model with improved brain storm optimization[J]. Space Medicine and Medical Engineering, 2015, 28(6): 403-407.
    LI S, PU F, LI D. An improved edge detection algorithm based on area morphology and maximum entropy[C]//Second International Conference on Innovative Computing, Information and Control. New York: IEEE, 2007: 536-539.
    曲仕茹,杨红红. 基于遗传算法参数优化的PCNN红外图像分割[J]. 强激光与粒子束,2015,27(5): 38-43.

    QU Shiru, YANG Honghong. Infrared image segmentation based on PCNN with genetic algorithm parameter optimization[J]. High Power Laser and Particle Beams, 2015, 27(5): 38-43.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(3)

    Article views(362) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return