• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
FENG Bo, LIU Qing, QIAN Yongjiu. Durability Analysis of High-Performance Concrete Under Chloride Salt Erosion and Freeze-Thaw Cycles[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1083-1089. doi: 10.3969/j.issn.0258-2724.20220035
Citation: FENG Bo, LIU Qing, QIAN Yongjiu. Durability Analysis of High-Performance Concrete Under Chloride Salt Erosion and Freeze-Thaw Cycles[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1083-1089. doi: 10.3969/j.issn.0258-2724.20220035

Durability Analysis of High-Performance Concrete Under Chloride Salt Erosion and Freeze-Thaw Cycles

doi: 10.3969/j.issn.0258-2724.20220035
  • Received Date: 14 Jan 2022
  • Rev Recd Date: 15 Oct 2022
  • Available Online: 21 Jun 2023
  • Publish Date: 12 Jan 2023
  • In order to study the durability of high-performance concrete (HPC) bridges in the marine environment, based on the rapid indoor freeze-thaw test of concrete, the durability of HPC under the coupled action of chloride salt erosion and freeze-thaw cycles was tested, and the mass loss rate and relative dynamic elastic modulus of concrete under different water-binder ratios, fly ash contents, and air contents were analyzed. According to the test analysis results, a quality prediction attenuation model of HPC under the coupled action of chloride salt erosion and freeze-thaw cycles was established. The results show that the water-binder ratio has a great influence on the salt-freezing resistance of HPC. The salt-freezing resistance of concrete decreases with the increase in the water-binder ratio, and it is suggested that the water-binder ratio should not be greater than 0.45; the addition of fly ash will reduce the salt-freezing resistance of concrete, and the salt-freezing resistance can hardly meet the requirements when the fly ash content is high. Therefore, the fly ash content should not be higher than 30%; as air content increases, the salt-freezing resistance of concrete first increases and then decreases. The air content of concrete considering the salt-freezing resistance requirements is recommended to be selected within the range of 4.5%–5.5%.

     

  • [1]
    刘青. 寒冷地区海洋环境下混凝土桥梁耐久性研究[D]. 成都: 西南交通大学, 2017.
    [2]
    张立群,穆柏林,孙婧,等. 冻融和碳化共同作用下硅灰自密实混凝土耐久性试验研究[J]. 混凝土,2019(11): 90-93.

    ZHANG Liqun, MU Bailin, SUN Jing, et al. Experimental study on durability of silica fume self-compacting concrete under joint action of freeze-thawing and carbonization[J]. Concrete, 2019(11): 90-93.
    [3]
    姜文镪,刘清风. 冻融循环下混凝土中氯离子传输研究进展[J]. 硅酸盐学报,2020,48(2): 258-272.

    JIANG Wenqiang, LIU Qingfeng. Chloride transport in concrete subjected to freeze-thaw cycles−a short review[J]. Journal of the Chinese Ceramic Society, 2020, 48(2): 258-272.
    [4]
    王月. 氯盐冻融循环与侵蚀作用下活性粉末混凝土的耐久性研究[D]. 北京: 北京交通大学, 2016.
    [5]
    南雪丽,王超杰,刘金欣,等. 冻融循环和氯盐侵蚀耦合条件对聚合物快硬水泥混凝土抗冻性的影响[J]. 材料导报,2017,31(23): 177-181.

    NAN Xueli, WANG Chaojie, LIU Jinxin, et al. Influence of the freeze-thaw cycle and chlorine salt erosion coupling conditions on frost-resistance of polymer-modified rapid hardening concrete[J]. Materials Review, 2017, 31(23): 177-181.
    [6]
    龙广成,杨振雄,白朝能,等. 荷载-冻融耦合作用下充填层自密实混凝土的耐久性及损伤模型[J]. 硅酸盐学报,2019,47(7): 855-864.

    LONG Guangcheng, YANG Zhenxiong, BAI Chaoneng, et al. Durability and damage constitutive model of filling layer self-compacting concrete subjected to coupling action of freeze-thaw cycles and load[J]. Journal of the Chinese Ceramic Society, 2019, 47(7): 855-864.
    [7]
    郑山锁,张艺欣,裴培,等. 冻融循环作用下钢筋混凝土柱抗震性能试验研究[J]. 建筑结构学报,2020,41(6): 84-91.

    ZHENG Shansuo, ZHANG Yixin, PEI Pei, et al. Experimental research on seismic behavior of reinforced concrete columns subjected to freeze-thaw cycles[J]. Journal of Building Structures, 2020, 41(6): 84-91.
    [8]
    王晨霞,刘军,曹芙波,等. 冻融-碳化耦合作用下矿渣-粉煤灰再生混凝土试验研究[J]. 建筑结构,2020,50(15): 85-90.

    WANG Chenxia, LIU Jun, CAO Fubo, et al. Experimental study on slag-fly ash recycled concrete under the action of freeze-thaw-carbonation coupling[J]. Building Structure, 2020, 50(15): 85-90.
    [9]
    田立宗,逯静洲,朱孔峰,等. 冻融循环与疲劳荷载作用下混凝土损伤研究[J]. 长江科学院院报,2018,35(2): 140-144,150.

    TIAN Lizong, LU Jingzhou, ZHU Kongfeng, et al. Damage of concrete under freeze-thaw cycles and fatigue load[J]. Journal of Yangtze River Scientific Research Institute, 2018, 35(2): 140-144,150.
    [10]
    王家滨,牛荻涛. 弯曲应力作用下喷射混凝土氯离子扩散研究[J]. 土木工程学报,2018,51(2): 95-102,120.

    WANG Jiabin, NIU Ditao. Investigation of chloride ion diffusion in shotcrete under bending loading[J]. China Civil Engineering Journal, 2018, 51(2): 95-102,120.
    [11]
    邹洪波,罗小勇. 压应力作用下混凝土中氯离子侵蚀性能研究[J]. 中国公路学报,2017,30(4): 87-96.

    ZOU Hongbo, LUO Xiaoyong. Research on performance of chloride ion corrosion in concrete under compressive stress[J]. China Journal of Highway and Transport, 2017, 30(4): 87-96.
    [12]
    任娟娟,杜威,邓世杰,等. 疲劳荷载下无砟轨道混凝土中氯离子传输研究[J]. 西南交通大学学报,2021,56(3): 510-516.

    REN Juanjuan, DU Wei, DENG Shijie, et al. Chloride ion transport in concrete of ballastless track under fatigue loading[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 510-516.
    [13]
    王喜彬,张进,马志鸣,等. 表面防水混凝土在冻融环境下抗氯离子侵蚀性能研究[J]. 混凝土,2016(7): 57-60.

    WANG Xibin, ZHANG Jin, MA Zhiming, et al. Chloride penetration behavior of surface water-proofing concrete under freeze-thaw environment[J]. Concrete, 2016(7): 57-60.
    [14]
    ALMUSALLAM A A, KHAN F M, DULAIJAN S U, et al. Effectiveness of surface coatings in improving concrete durability[J]. Cement and Concrete Composites, 2003, 25(4/5): 473-481.
    [15]
    HAO L C, LIU Y Z, XIAO J Z. Durability of recycled aggregate thermal insulation concrete under combined flexural loading and freeze-thaw cycles[J]. Construction and Building Materials, 2021, 272: 121652.1-121652.14.
    [16]
    AL-LEBBAN M F, KHAZALY A I, SHABBAR R, et al. Effect of polypropylene fibers on some mechanical properties of concrete and durability against freezing and thawing cycles[J]. Key Engineering Materials, 2021, 895: 130-138. doi: 10.4028/www.scientific.net/KEM.895.130
    [17]
    中华人民共和国住房和城乡建设部. 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082—2009[S]. 北京: 中国建筑工业出版社, 2009.
    [18]
    李雁. 海洋腐蚀与冻融环境下掺合料混凝土物理力学性能及损伤机理研究[D]. 徐州: 中国矿业大学, 2015.
    [19]
    李田, 刘西拉. 混凝土结构耐久性分析与设计[M]. 北京: 科学出版社, 1999.
    [20]
    金祖权,陈惠苏,侯保荣,等. 引气混凝土在冻融循环过程中的氯离子渗透与孔结构[J]. 中南大学学报(自然科学版),2012,43(5): 1963-1968.

    JIN Zuquan, CHEN Huisu, HOU Baorong, et al. Chloride penetration and pore structure of air entrained concrete subjected to freeze-thaw cycles[J]. Journal of Central South University (Science and Technology), 2012, 43(5): 1963-1968.
    [21]
    中华人民共和国住房和城乡建设部. 混凝土结构耐久性设计标准: GB/T 50476—2019[S]. 北京: 中国建筑工业出版社, 2019.
  • Relative Articles

    [1]LI Maohong, LIANG Lei, GUO Qiuxu, FU Xiaojie, HUANG Qunyi, ZHANG Shengli, WANG Ping. Whisker-Reinforced Repairing Mortar for High-Speed Railway Concrete[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240037
    [2]HOU Chao, JIN Xiaoguang, HE Jie, FANG Zhiyuan. Freeze-Thaw Damage Characteristics of Anhydrite Rock Pore Structures Based on Nuclear Magnetic Resonance Technology[J]. Journal of Southwest Jiaotong University, 2025, 60(3): 608-617. doi: 10.3969/j.issn.0258-2724.20230314
    [3]ZHAO Hua, YUAN Weiguang, WEI Chengjin, LENG Donghang, CHEN Peng. Experimental Study on Seismic Performance of Concrete Frame Structures Reinforced with High-Strength Steel Bars[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20250036
    [4]YUAN Weiguang, ZHAO Hua, MA Lan, XIAO Qiang, WEI Chengjin. Investigation on Seismic Performance of Concrete Short-Leg Shear Wall with High-Strength Steel Bars[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230376
    [5]YU Yunyan, LUO Chongliang, CUI Wenhao, DU Qianzhong, GAO Yuan, ZHANG Tinghua. Heat–Mass Transfer and Salt-Frost Heave Mechanism of Saline Soil under Freeze–Thaw Cycle[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230299
    [6]XIA Dongtao, WU Chen, CUI Kai, WU Fanghong, LI Biao, WANG Yu, YU Shiting, LI Yaowei. Effect of Fly Ash and Silica Fume Contents on Mechanical Properties of Alkali-Activated Slag-Based Concrete[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1113-1122. doi: 10.3969/j.issn.0258-2724.20230036
    [7]LIU Xin, YAO Yunlong, ZHANG Siqing, SHI Yunqiang, HONG Baoning. Influence of Temperature on Performance and Microporous Structure of Foamed Concrete During Pouring Period[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1123-1131. doi: 10.3969/j.issn.0258-2724.20220179
    [8]ZHAO Haitao, DING Jian, YANG Guo, XIANG Yu, XU Wen, CHEN Yuzhi. Experimental Investigation of Relative Humidity Response in Early-Age Concrete Under Tensile Stress[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1104-1112. doi: 10.3969/j.issn.0258-2724.20220134
    [9]HE Fei, WANG Xu, JIANG Daijun, ZHOU Yalong, LI Junshan, CHEN Hangjie, CHEN Mingwei. Creep Characteristics of Frozen Sand-Concrete Interface Based on Ice Content[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 361-368. doi: 10.3969/j.issn.0258-2724.20220552
    [10]LI Fuhai, TANG Huiqi, LI Jiyun, LIU Menghui, WANG Jiangshan, CHEN Shuang, XU Tengfei. Concrete Elastic Modulus and Creep Control Based on Dense Packing Theory[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 404-412. doi: 10.3969/j.issn.0258-2724.20210431
    [11]LAI Jun, CAI Jian, ZUO Zhiliang, FENG Yinian. Non-uniform Corrosion and Load Bearing Capacity Deterioration Tests of Reinforced Concrete Beams Under Load and Chloride Salt Environment[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1140-1147, 1157. doi: 10.3969/j.issn.0258-2724.20220038
    [12]LI Jin, SHI Yuefeng, XIAO Xin, LOU Liangwei, CAI Degou, XIAO Feipeng. Freeze-Thaw Damage Evolution Model of Asphalt Concrete for Waterproofing Layer in High-Speed Railways[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 281-288. doi: 10.3969/j.issn.0258-2724.20220335
    [13]TANG Hongyuan, LIAO Jing, LIU Ruizhong, HU Xiaowei. Bearing Capacity of Concrete-Filled Double Skin Stub Columns with Square outer Stainless Steel tube Under Axial Compression[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 421-429. doi: 10.3969/j.issn.0258-2724.20210388
    [14]HOU Chao, JIN Xiaoguang, HE Jie, ZHANG Chi. Research on Damage Model of Rock Under Freeze-Thaw Cycles Based on Maximum Tensile Strain Criterion[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1045-1055. doi: 10.3969/j.issn.0258-2724.20210493
    [15]MA Junjun, LIN Pengzhen, LIU Yinglong, HE Zhigang. Simulation and Analysis of Chloride Ion Diffusion in Cracked Concrete Based on Cellular Automata[J]. Journal of Southwest Jiaotong University, 2022, 57(2): 360-368. doi: 10.3969/j.issn.0258-2724.20210359
    [16]ZHAO Renda, YANG Shiyu, JIA Wentao, ZENG Xianshuai, JIN Hesong, LI Fuhai. Review of Recent Progress in Durability of Fly Ash Based Geopolymer Concrete[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 1065-1074. doi: 10.3969/j.issn.0258-2724.20190993
    [17]LIU Youneng, HUANG Runqiu, LIU Enlong, LIAO Mengke. Influence of Freezing-Thawing Cycles on Mechanical Properties of Tailing Soil at Yunnan-Guizhou Plateau[J]. Journal of Southwest Jiaotong University, 2020, 55(5): 1052-1059. doi: 10.3969/j.issn.0258-2724.20180520
    [18]WANG Zhen, LI Guhua, ZHANG Zejiang, HUANG Tao. Effect of Fire Fighting Water on Compressive Strength of Concrete in Tunnel Fire[J]. Journal of Southwest Jiaotong University, 2011, 24(2): 223-227. doi: 10.3969/j.issn.0258-2724.2011.02.008
    [19]LI Zhenxin, GUO Fengzhe, QIAN Yongjiu. Fuzzy Comprehensive Evaluation of Durability of Existing Reinforced Concrete Arch Bridges[J]. Journal of Southwest Jiaotong University, 2006, 19(3): 366-370.
  • Cited by

    Periodical cited type(11)

    1. 朱伟庆,张亚飞,张丽华,贾金青,殷天扬. 盐冻环境下混凝土桥梁服役性能演变规律及耐久性评价指标综述. 长安大学学报(自然科学版). 2025(01): 69-91 .
    2. 荣怀娇. 环境侵蚀作用下高性能混凝土耐久性退化规律研究. 城市建设理论研究(电子版). 2025(10): 181-183 .
    3. 王一. 氧化石墨烯对桥墩混凝土力学及耐久性能的影响研究. 粘接. 2025(04): 91-94 .
    4. 陈颖. 防水添加剂对高性能混凝土耐久性影响的研究. 甘肃科技. 2025(02): 10-13 .
    5. 刘彦文. 西北盐渍土地区衬砌混凝土优化与耐久性研究. 地下空间与工程学报. 2025(02): 581-589 .
    6. 张波,丁涛,肖长林,曹永强. 超细粉煤灰轻骨料混凝土制备与抗腐蚀耐久性探究. 粘接. 2025(06): 72-75 .
    7. 张宇,张志伟,徐强,张雪. 盐浸-干湿-冻融耦合作用下混凝土坝强震开裂机理. 南水北调与水利科技(中英文). 2024(01): 158-165 .
    8. 王尧. 冻融循环对公路混凝土性能影响的缓解与预防措施. 产品可靠性报告. 2024(04): 100-101 .
    9. 张宇,张雪,王舒,王铭明. 盐浸-冻融-紫外线三因素影响下寒区混凝土坝强震损伤研究. 实验力学. 2024(04): 454-462 .
    10. 陈少杰,任建喜,刘浪,李玉根,任翔,符强. 冻融与盐蚀耦合作用下混凝土的细观特征与损伤演化规律. 硅酸盐学报. 2024(11): 3524-3536 .
    11. 方莹,文祝. 多尺度碳纤维改性混凝土的力学性能及抗冻性. 硅酸盐通报. 2024(11): 4004-4011 .

    Other cited types(9)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-062025-07010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 30.6 %FULLTEXT: 30.6 %META: 62.7 %META: 62.7 %PDF: 6.7 %PDF: 6.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 14.2 %其他: 14.2 %其他: 0.1 %其他: 0.1 %上海: 1.2 %上海: 1.2 %东莞: 1.2 %东莞: 1.2 %临汾: 0.1 %临汾: 0.1 %丹佛: 0.1 %丹佛: 0.1 %兰州: 0.3 %兰州: 0.3 %凉山: 0.5 %凉山: 0.5 %包头: 0.1 %包头: 0.1 %北京: 10.8 %北京: 10.8 %十堰: 0.6 %十堰: 0.6 %南京: 1.1 %南京: 1.1 %南宁: 0.2 %南宁: 0.2 %南通: 0.2 %南通: 0.2 %南里奥格兰德州: 0.1 %南里奥格兰德州: 0.1 %厦门: 0.2 %厦门: 0.2 %合肥: 0.1 %合肥: 0.1 %呼和浩特: 0.7 %呼和浩特: 0.7 %哈密尔顿: 0.2 %哈密尔顿: 0.2 %哈尔滨: 0.3 %哈尔滨: 0.3 %哥伦布: 0.4 %哥伦布: 0.4 %嘉兴: 0.6 %嘉兴: 0.6 %大庆: 0.1 %大庆: 0.1 %大连: 0.1 %大连: 0.1 %天津: 2.0 %天津: 2.0 %太原: 0.1 %太原: 0.1 %奇诺: 0.1 %奇诺: 0.1 %宁波: 0.3 %宁波: 0.3 %安康: 0.2 %安康: 0.2 %宜昌: 0.1 %宜昌: 0.1 %宣城: 0.3 %宣城: 0.3 %宿迁: 0.1 %宿迁: 0.1 %山景城: 0.1 %山景城: 0.1 %巨港: 0.1 %巨港: 0.1 %广州: 0.2 %广州: 0.2 %延安: 0.3 %延安: 0.3 %延边: 0.2 %延边: 0.2 %张家口: 2.1 %张家口: 2.1 %徐州: 0.1 %徐州: 0.1 %德州: 0.1 %德州: 0.1 %成都: 0.7 %成都: 0.7 %扬州: 0.6 %扬州: 0.6 %无锡: 0.7 %无锡: 0.7 %日照: 0.1 %日照: 0.1 %昆明: 0.4 %昆明: 0.4 %明斯克: 0.5 %明斯克: 0.5 %杭州: 1.1 %杭州: 1.1 %柳州: 0.1 %柳州: 0.1 %格兰特县: 0.1 %格兰特县: 0.1 %梅州: 0.1 %梅州: 0.1 %武汉: 0.9 %武汉: 0.9 %池州: 0.6 %池州: 0.6 %沈阳: 0.5 %沈阳: 0.5 %洛阳: 0.3 %洛阳: 0.3 %济南: 0.4 %济南: 0.4 %淄博: 0.1 %淄博: 0.1 %深圳: 1.2 %深圳: 1.2 %温州: 0.5 %温州: 0.5 %港区: 0.2 %港区: 0.2 %漯河: 3.5 %漯河: 3.5 %潍坊: 0.1 %潍坊: 0.1 %潮州: 0.1 %潮州: 0.1 %烟台: 0.1 %烟台: 0.1 %石家庄: 7.2 %石家庄: 7.2 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.3 %秦皇岛: 0.3 %绵阳: 0.1 %绵阳: 0.1 %芒廷维尤: 5.4 %芒廷维尤: 5.4 %芝加哥: 0.9 %芝加哥: 0.9 %苏州: 0.1 %苏州: 0.1 %荆州: 0.1 %荆州: 0.1 %莫斯科: 0.1 %莫斯科: 0.1 %衡阳: 0.3 %衡阳: 0.3 %西宁: 19.3 %西宁: 19.3 %西安: 1.5 %西安: 1.5 %诺沃克: 0.3 %诺沃克: 0.3 %贵阳: 0.3 %贵阳: 0.3 %达州: 0.5 %达州: 0.5 %迈阿密: 0.1 %迈阿密: 0.1 %运城: 0.6 %运城: 0.6 %邯郸: 0.1 %邯郸: 0.1 %郑州: 2.4 %郑州: 2.4 %重庆: 0.5 %重庆: 0.5 %长沙: 4.6 %长沙: 4.6 %阿勒泰: 0.1 %阿勒泰: 0.1 %随州: 0.1 %随州: 0.1 %青岛: 0.8 %青岛: 0.8 %鞍山: 0.2 %鞍山: 0.2 %黄冈: 0.1 %黄冈: 0.1 %黄石: 0.3 %黄石: 0.3 %其他其他上海东莞临汾丹佛兰州凉山包头北京十堰南京南宁南通南里奥格兰德州厦门合肥呼和浩特哈密尔顿哈尔滨哥伦布嘉兴大庆大连天津太原奇诺宁波安康宜昌宣城宿迁山景城巨港广州延安延边张家口徐州德州成都扬州无锡日照昆明明斯克杭州柳州格兰特县梅州武汉池州沈阳洛阳济南淄博深圳温州港区漯河潍坊潮州烟台石家庄福州秦皇岛绵阳芒廷维尤芝加哥苏州荆州莫斯科衡阳西宁西安诺沃克贵阳达州迈阿密运城邯郸郑州重庆长沙阿勒泰随州青岛鞍山黄冈黄石

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article views(595) PDF downloads(64) Cited by(20)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return