• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
WANG Yaodong, ZHU Liqiang, YU Zujun, SHI Hongmei, SHE Changmei. Intelligent Tunnel Crack Recognition Based on Automatic Sample Labeling[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1001-1008, 1036. doi: 10.3969/j.issn.0258-2724.20210092
Citation: WANG Yaodong, ZHU Liqiang, YU Zujun, SHI Hongmei, SHE Changmei. Intelligent Tunnel Crack Recognition Based on Automatic Sample Labeling[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1001-1008, 1036. doi: 10.3969/j.issn.0258-2724.20210092

Intelligent Tunnel Crack Recognition Based on Automatic Sample Labeling

doi: 10.3969/j.issn.0258-2724.20210092
  • Received Date: 08 Feb 2021
  • Rev Recd Date: 21 Jun 2021
  • Available Online: 30 May 2023
  • Publish Date: 06 Jul 2021
  • Detecting tunnel surface cracks has been one of the important tasks for subway operators. To achieve the automatic detection of tunnel cracks, this paper proposed an automatic labeling and recognition algorithm for tunnel crack samples, which combined crack feature extraction with deep learning. The paper also established an image feature library of crack samples based on the feature of tunnel cracks and improved the structure of the deep convolution network, namely AlexNet. In addition, the paper designed a track-sliding tunnel image acquisition system and inspection vehicle and then established a dataset consisting of 4 500 crack image samples and 1 500 test images, so as to verify the feasibility and effectiveness of the algorithm. The result shows that the clarity of the collected images meets the requirements, and the designed algorithm can complete the automatic labeling of cracks. The recognition rate of the crack image dataset is 97.8%, which can verify the effectiveness of the algorithm and the acquisition system.

     

  • [1]
    罗佳,刘大刚. 基于自适应阈值和连通域的隧道裂缝提取[J]. 西南交通大学学报,2018,53(6): 1137-1141,1149. doi: 10.3969/j.issn.0258-2724.2018.06.007

    LUO Jia, LIU Dagang. Tunnel crack extraction based on adaptive threshold and connected domain[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1137-1141,1149. doi: 10.3969/j.issn.0258-2724.2018.06.007
    [2]
    GAO X W, LI S Q, JIN B Y, et al. Intelligent crack damage detection system in shield tunnel using combination of retinanet and optimal adaptive selection[J]. Journal of Intelligent & Fuzzy Systems, 2021, 40(3): 4453-4469.
    [3]
    REN Y P, HUANG J S, HONG Z Y, et al. Image-based concrete crack detection in tunnels using deep fully convolutional networks[J]. Construction and Building Materials, 2020, 234: 1-12.
    [4]
    王睿,漆泰岳. 基于机器视觉检测的裂缝特征研究[J]. 土木工程学报,2016,49(7): 123-128. doi: 10.15951/j.tmgcxb.2016.07.012

    WANG Rui, QI Taiyue. Study on crack characteristics based on machine vision detection[J]. China Civil Engineering Journal, 2016, 49(7): 123-128. doi: 10.15951/j.tmgcxb.2016.07.012
    [5]
    朱力强,王春薇,王耀东,等. 基于特征点集距离描述的裂缝图像匹配算法研究[J]. 仪器仪表学报,2016,37(12): 2851-2858. doi: 10.19650/j.cnki.cjsi.2016.12.027

    ZHU Liqiang, WANG Chunwei, WANG Yaodong, et al. Algorithm of crack images matching by feature points set distance description[J]. Chinese Journal of Scientific Instrument, 2016, 37(12): 2851-2858. doi: 10.19650/j.cnki.cjsi.2016.12.027
    [6]
    MEDINA R, LLAMAS J, GÓMEZ-GARCÍA-BERMEJO J, et al. Crack detection in concrete tunnels using a Gabor filter invariant to rotation[J]. Sensors, 2017, 17(7): 1-16.
    [7]
    HUANG H W, LI Q T, ZHANG D M. Deep learning based image recognition for crack and leakage defects of metro shield tunnel[J]. Tunnelling and Underground Space Technology, 2018, 77: 166-176. doi: 10.1016/j.tust.2018.04.002
    [8]
    ATTARD L, DEBONO C J, VALENTINO G, et al. Tunnel inspection using photogrammetric techniques and image processing: a review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 144: 180-188. doi: 10.1016/j.isprsjprs.2018.07.010
    [9]
    PROTOPAPADAKIS E, VOULODIMOS A, DOULAMIS A, et al. Automatic crack detection for tunnel inspection using deep learning and heuristic image post-processing[J]. Applied Intelligence, 2019, 49(7): 2793-2806. doi: 10.1007/s10489-018-01396-y
    [10]
    CHA Y J, CHOI W, BÜYÜKÖZTÜRK O. Deep learning-based crack damage detection using convolutional neural networks[J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32(5): 361-378. doi: 10.1111/mice.12263
    [11]
    DORAFSHAN S, THOMAS R J, MAGUIRE M. Comparison of deep convolutional neural networks and edge detectors for image-based crack detection in concrete[J]. Construction and Building Materials, 2018, 186: 1031-1045. doi: 10.1016/j.conbuildmat.2018.08.011
    [12]
    LIU Z Q, CAO Y W, WANG Y Z, et al. Computer vision-based concrete crack detection using U-net fully convolutional networks[J]. Automation in Construction, 2019, 104: 129-139. doi: 10.1016/j.autcon.2019.04.005
  • Relative Articles

    [1]ZHANG Hong, JIANG Xiaogang, ZHU Zhiwei, XIA Runchuan, ZHOU Jianting. Review on Intelligent Image Recognition of Apparent Diseases of Stay Cable[J]. Journal of Southwest Jiaotong University, 2025, 60(1): 10-26. doi: 10.3969/j.issn.0258-2724.20220647
    [2]YANG Yanchun, YAN Yan, WANG Ke. Infrared and Visible Image Fusion Based on Attention Mechanism and Illumination-Aware Network[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1204-1214. doi: 10.3969/j.issn.0258-2724.20230529
    [3]YUE Chuan, WANG Lide, YAN Haipeng. Attack-Sample Generation Method for Train Communication Network Under Few-Shot Condition[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1277-1285. doi: 10.3969/j.issn.0258-2724.20210557
    [4]ZHOU Ning, WANG Jundong, LIU Yueping, YANG Xuan, LI Yan, WU Zaixin, ZHANG Weihua. Image Processing Based Method for Measuring Contact Force in Pantograph-Catenary System[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 1-8, 57. doi: 10.3969/j.issn.0258-2724.20210509
    [5]LI Zechen, LI Hengchao, HU Wenshuai, YANG Jinyu, HUA Zexi. Masked Face Detection Model Based on Multi-scale Attention-Driven Faster R-CNN[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 1002-1010. doi: 10.3969/j.issn.0258-2724.20210017
    [6]QIU Yanjun, WANG Guolong, YANG Enhui, YU Xiaoli, WANG Chenping. Crack Detection of 3D Asphalt Pavement Based on Multi-feature Test[J]. Journal of Southwest Jiaotong University, 2020, 55(3): 518-524. doi: 10.3969/j.issn.0258-2724.20180270
    [7]YANG Gang, LI Hengchao, TAN Bei, SHI Chaoqun, ZHANG Xueqin, GUO Yujun, WU Guangning. Application of Hierarchical Extreme Learning Machine in Prediction of Insulator Pollution Degree Using Hyperspectral Images[J]. Journal of Southwest Jiaotong University, 2020, 55(3): 579-587. doi: 10.3969/j.issn.0258-2724.20190093
    [8]XIANG Yu, CONG Deming, ZHANG Yang, YUAN Fei. Two-Stream Neural Network Fusion Model for Highway Fog Detection[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 173-179. doi: 10.3969/j.issn.0258-2724.20180205
    [9]HOU Jin, LÜ Zhiliang, XU Mao, WU Peijun, LIU Yuling, ZHANG Xiaoyu, CHENG Zeng. Combined Neural Networks Based on Deep Learning for Signal Detection in Aeronautical Communications[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 863-869, 878. doi: 10.3969/j.issn.0258-2724.20180164
    [10]QIN Zhentao, YANG Wunian, YANG Ru, PAN Peifen, DENG Cong. Hyperspectral Image Classification Based on Structured Dictionary Learning[J]. Journal of Southwest Jiaotong University, 2015, 28(2): 336-341. doi: 10.3969/j.issn.0258-2724.2015.02.020
    [11]PENG Bo, WANG Kelvin C.P., CHEN Cheng, JIANG Yangsheng. 3D Pavement Crack Image Detection Based on Anisotropy Measure[J]. Journal of Southwest Jiaotong University, 2014, 27(5): 888-895. doi: 10.3969/j.issn.0258-2724.2014.05.023
    [12]Chen-Wei-Rong, FENG  Qian, ZHANG  Jian, XU Guo-Wang, LI  Zhe, . Image ObjectDetection inM onitoring ofPantograph Slippers[J]. Journal of Southwest Jiaotong University, 2010, 23(1): 59-64. doi: 10. 3969/.j issn. 0258-2724. 2
    [13]LI Hengjian, YIN Zhongke, ZHANG Jiashu, WANG Jianying. Image Sparse Decomposition Based on Particle Swarm Optimization with Chaotic Mutation[J]. Journal of Southwest Jiaotong University, 2008, 21(4): 509-513.
    [14]LI Hengjian, YIN Zhongke, WANG Jianying. Image Sparse Decomposition Based on Quantum Genetic Algorithm[J]. Journal of Southwest Jiaotong University, 2007, 20(1): 19-23.
    [15]ZHANG Chao, ZHANG Jia-shu, CHENHui, JIADong-li. Transition Region Extraction Algorithm Based on LocalFuzzy Entropy[J]. Journal of Southwest Jiaotong University, 2005, 18(5): 663-666.
    [16]WANGHong-xia, LUO Jian. SelfadaptiveW atermarking Synchrorization Scheme Based on Image Connectivity[J]. Journal of Southwest Jiaotong University, 2005, 18(6): 720-726.
    [17]XIE Zhi-jiang, HAN Zhi-hua, XIAO Yi. Development of Digital Video Monitoring System for Steel-Making Process[J]. Journal of Southwest Jiaotong University, 2003, 16(5): 592-595.
    [18]WANGJin-tao, LIUWen-yao, LUShuo. Application of Watershed Algorithm to Cell Image Segmentation[J]. Journal of Southwest Jiaotong University, 2002, 15(3): 290-294.
    [19]HAO Yong-jie, LIUWen-yao, LUShuo. Spatial Correction of the Distorted License Plate Image of Automobiles[J]. Journal of Southwest Jiaotong University, 2002, 15(4): 417-420.
    [20]YANG Tian-wu, LIU Rong, PENG Qiang. Real-Time Video Technologies for MS-Windows[J]. Journal of Southwest Jiaotong University, 2002, 15(2): 172-176.
  • Cited by

    Periodical cited type(9)

    1. 张洪,蒋小刚,朱志伟,夏润川,周建庭. 斜拉索表观病害图像智能识别综述. 西南交通大学学报. 2025(01): 10-26 . 本站查看
    2. 黄俊,张顶立,梁文灏,董飞,李奥,赵光,杨奎,牛晓凯. 服役期隧道结构安全控制技术研究综述. 铁道标准设计. 2024(04): 1-19 .
    3. 高晓静,崔丹怡,李磊,许崇帮. 绿色隧道建设和养护技术研究现状. 公路交通科技. 2024(04): 132-145 .
    4. 武斌,于双玲,陈杨杨,赵洁. 结合三维无参数注意力机制的隧道裂缝检测方法. 隧道建设(中英文). 2024(07): 1520-1531 .
    5. 胡波,陈翰新,任松,屈英豪,刘清屹,涂歆玥,王大涛. 一种基于分割掩码的隧道裂缝病害自动识别后处理算法. 测绘学报. 2024(09): 1715-1724 .
    6. 杨汉龙,陈锦剑,潘越. Swin-Unet在坝面混凝土裂缝自动标注与分割方法的研究. 水力发电学报. 2024(12): 23-33 .
    7. 王萍,秦川,朱军,刘洋,谢亚坤,孙中秋,赖建波,党沛. 联合MSF和FCD的公路隧道视频裂缝关键帧提取算法. 北京交通大学学报. 2024(05): 98-106 .
    8. 段建,周文权,彭辉华,唐喜梅,禹瑜俊,石博. 城区地下人防洞室病害调查及其处置对策研究. 湖南工程学院学报(自然科学版). 2023(03): 71-78 .
    9. 尹初,赵启林,芮挺,袁辉,王剑. 基于自适应锚框的裂缝目标检测算法研究. 计算机与现代化. 2022(11): 95-101+110 .

    Other cited types(7)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-062025-070255075100125150
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 61.7 %FULLTEXT: 61.7 %META: 31.8 %META: 31.8 %PDF: 6.5 %PDF: 6.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 13.2 %其他: 13.2 %其他: 0.6 %其他: 0.6 %Central District: 0.1 %Central District: 0.1 %China: 0.1 %China: 0.1 %Indianapolis: 0.1 %Indianapolis: 0.1 %Research: 0.0 %Research: 0.0 %Rochester: 0.0 %Rochester: 0.0 %San Lorenzo: 0.0 %San Lorenzo: 0.0 %三明: 0.0 %三明: 0.0 %上海: 2.3 %上海: 2.3 %东莞: 1.7 %东莞: 1.7 %临汾: 0.3 %临汾: 0.3 %乌鲁木齐: 0.1 %乌鲁木齐: 0.1 %乐山: 0.0 %乐山: 0.0 %九江: 0.0 %九江: 0.0 %亚特兰大: 0.0 %亚特兰大: 0.0 %保定: 0.1 %保定: 0.1 %信阳: 0.0 %信阳: 0.0 %六安: 0.0 %六安: 0.0 %兰州: 0.2 %兰州: 0.2 %内江: 0.0 %内江: 0.0 %北京: 6.4 %北京: 6.4 %十堰: 1.1 %十堰: 1.1 %南京: 0.9 %南京: 0.9 %南宁: 0.3 %南宁: 0.3 %南昌: 0.1 %南昌: 0.1 %南通: 0.5 %南通: 0.5 %南阳: 0.0 %南阳: 0.0 %台北: 0.0 %台北: 0.0 %台州: 0.1 %台州: 0.1 %台湾: 0.1 %台湾: 0.1 %合肥: 0.0 %合肥: 0.0 %呼和浩特: 0.1 %呼和浩特: 0.1 %哈尔滨: 0.1 %哈尔滨: 0.1 %嘉兴: 0.6 %嘉兴: 0.6 %圣何塞: 0.0 %圣何塞: 0.0 %大庆: 0.0 %大庆: 0.0 %大连: 0.0 %大连: 0.0 %天津: 3.2 %天津: 3.2 %太原: 0.4 %太原: 0.4 %宁波: 0.2 %宁波: 0.2 %安康: 0.2 %安康: 0.2 %安阳: 0.0 %安阳: 0.0 %宣城: 0.8 %宣城: 0.8 %宿迁: 0.0 %宿迁: 0.0 %山景城: 0.3 %山景城: 0.3 %常州: 0.3 %常州: 0.3 %平顶山: 0.0 %平顶山: 0.0 %广州: 0.9 %广州: 0.9 %廊坊: 0.1 %廊坊: 0.1 %延安: 0.1 %延安: 0.1 %开封: 0.2 %开封: 0.2 %开罗: 0.1 %开罗: 0.1 %弗吉尼亚州: 0.0 %弗吉尼亚州: 0.0 %张家口: 1.5 %张家口: 1.5 %徐州: 0.1 %徐州: 0.1 %惠州: 0.0 %惠州: 0.0 %成都: 1.1 %成都: 1.1 %扬州: 2.4 %扬州: 2.4 %抚州: 0.1 %抚州: 0.1 %新加坡: 0.0 %新加坡: 0.0 %无锡: 0.1 %无锡: 0.1 %昆明: 0.4 %昆明: 0.4 %晋中: 0.2 %晋中: 0.2 %曼谷: 0.0 %曼谷: 0.0 %朝阳: 0.0 %朝阳: 0.0 %杭州: 1.7 %杭州: 1.7 %柳州: 0.0 %柳州: 0.0 %武汉: 1.7 %武汉: 1.7 %江门: 0.1 %江门: 0.1 %池州: 0.4 %池州: 0.4 %沈阳: 1.4 %沈阳: 1.4 %泸州: 0.0 %泸州: 0.0 %洛阳: 0.8 %洛阳: 0.8 %济南: 0.6 %济南: 0.6 %济宁: 0.2 %济宁: 0.2 %淄博: 0.2 %淄博: 0.2 %深圳: 1.1 %深圳: 1.1 %清远: 0.0 %清远: 0.0 %温州: 1.2 %温州: 1.2 %湖州: 0.2 %湖州: 0.2 %湘潭: 0.1 %湘潭: 0.1 %漯河: 7.0 %漯河: 7.0 %漳州: 0.0 %漳州: 0.0 %烟台: 0.1 %烟台: 0.1 %珠海: 0.0 %珠海: 0.0 %甘孜: 0.0 %甘孜: 0.0 %盐城: 0.0 %盐城: 0.0 %石家庄: 2.9 %石家庄: 2.9 %福州: 0.5 %福州: 0.5 %秦皇岛: 0.4 %秦皇岛: 0.4 %绵阳: 0.0 %绵阳: 0.0 %芒廷维尤: 9.2 %芒廷维尤: 9.2 %芝加哥: 0.5 %芝加哥: 0.5 %苏州: 0.3 %苏州: 0.3 %荆州: 0.0 %荆州: 0.0 %蚌埠: 0.1 %蚌埠: 0.1 %衡阳: 0.3 %衡阳: 0.3 %衢州: 0.2 %衢州: 0.2 %襄阳: 0.3 %襄阳: 0.3 %西宁: 11.2 %西宁: 11.2 %西安: 1.7 %西安: 1.7 %西雅图: 0.0 %西雅图: 0.0 %许昌: 0.0 %许昌: 0.0 %诺沃克: 0.1 %诺沃克: 0.1 %贵阳: 0.2 %贵阳: 0.2 %赣州: 0.1 %赣州: 0.1 %运城: 0.3 %运城: 0.3 %邯郸: 0.6 %邯郸: 0.6 %郑州: 0.8 %郑州: 0.8 %重庆: 1.1 %重庆: 1.1 %金昌: 0.1 %金昌: 0.1 %镇江: 0.0 %镇江: 0.0 %长春: 0.2 %长春: 0.2 %长沙: 5.7 %长沙: 5.7 %防城港: 0.0 %防城港: 0.0 %阳江: 0.0 %阳江: 0.0 %雅加达: 0.0 %雅加达: 0.0 %青岛: 1.5 %青岛: 1.5 %香港: 0.1 %香港: 0.1 %马鞍山: 0.0 %马鞍山: 0.0 %黄石: 0.0 %黄石: 0.0 %其他其他Central DistrictChinaIndianapolisResearchRochesterSan Lorenzo三明上海东莞临汾乌鲁木齐乐山九江亚特兰大保定信阳六安兰州内江北京十堰南京南宁南昌南通南阳台北台州台湾合肥呼和浩特哈尔滨嘉兴圣何塞大庆大连天津太原宁波安康安阳宣城宿迁山景城常州平顶山广州廊坊延安开封开罗弗吉尼亚州张家口徐州惠州成都扬州抚州新加坡无锡昆明晋中曼谷朝阳杭州柳州武汉江门池州沈阳泸州洛阳济南济宁淄博深圳清远温州湖州湘潭漯河漳州烟台珠海甘孜盐城石家庄福州秦皇岛绵阳芒廷维尤芝加哥苏州荆州蚌埠衡阳衢州襄阳西宁西安西雅图许昌诺沃克贵阳赣州运城邯郸郑州重庆金昌镇江长春长沙防城港阳江雅加达青岛香港马鞍山黄石

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article views(650) PDF downloads(134) Cited by(16)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return