• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 58 Issue 5
Oct.  2023
Turn off MathJax
Article Contents
WANG Yaodong, ZHU Liqiang, YU Zujun, SHI Hongmei, SHE Changmei. Intelligent Tunnel Crack Recognition Based on Automatic Sample Labeling[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1001-1008, 1036. doi: 10.3969/j.issn.0258-2724.20210092
Citation: WANG Yaodong, ZHU Liqiang, YU Zujun, SHI Hongmei, SHE Changmei. Intelligent Tunnel Crack Recognition Based on Automatic Sample Labeling[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1001-1008, 1036. doi: 10.3969/j.issn.0258-2724.20210092

Intelligent Tunnel Crack Recognition Based on Automatic Sample Labeling

doi: 10.3969/j.issn.0258-2724.20210092
  • Received Date: 08 Feb 2021
  • Rev Recd Date: 21 Jun 2021
  • Available Online: 30 May 2023
  • Publish Date: 06 Jul 2021
  • Detecting tunnel surface cracks has been one of the important tasks for subway operators. To achieve the automatic detection of tunnel cracks, this paper proposed an automatic labeling and recognition algorithm for tunnel crack samples, which combined crack feature extraction with deep learning. The paper also established an image feature library of crack samples based on the feature of tunnel cracks and improved the structure of the deep convolution network, namely AlexNet. In addition, the paper designed a track-sliding tunnel image acquisition system and inspection vehicle and then established a dataset consisting of 4 500 crack image samples and 1 500 test images, so as to verify the feasibility and effectiveness of the algorithm. The result shows that the clarity of the collected images meets the requirements, and the designed algorithm can complete the automatic labeling of cracks. The recognition rate of the crack image dataset is 97.8%, which can verify the effectiveness of the algorithm and the acquisition system.

     

  • loading
  • [1]
    罗佳,刘大刚. 基于自适应阈值和连通域的隧道裂缝提取[J]. 西南交通大学学报,2018,53(6): 1137-1141,1149. doi: 10.3969/j.issn.0258-2724.2018.06.007

    LUO Jia, LIU Dagang. Tunnel crack extraction based on adaptive threshold and connected domain[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1137-1141,1149. doi: 10.3969/j.issn.0258-2724.2018.06.007
    [2]
    GAO X W, LI S Q, JIN B Y, et al. Intelligent crack damage detection system in shield tunnel using combination of retinanet and optimal adaptive selection[J]. Journal of Intelligent & Fuzzy Systems, 2021, 40(3): 4453-4469.
    [3]
    REN Y P, HUANG J S, HONG Z Y, et al. Image-based concrete crack detection in tunnels using deep fully convolutional networks[J]. Construction and Building Materials, 2020, 234: 1-12.
    [4]
    王睿,漆泰岳. 基于机器视觉检测的裂缝特征研究[J]. 土木工程学报,2016,49(7): 123-128. doi: 10.15951/j.tmgcxb.2016.07.012

    WANG Rui, QI Taiyue. Study on crack characteristics based on machine vision detection[J]. China Civil Engineering Journal, 2016, 49(7): 123-128. doi: 10.15951/j.tmgcxb.2016.07.012
    [5]
    朱力强,王春薇,王耀东,等. 基于特征点集距离描述的裂缝图像匹配算法研究[J]. 仪器仪表学报,2016,37(12): 2851-2858. doi: 10.19650/j.cnki.cjsi.2016.12.027

    ZHU Liqiang, WANG Chunwei, WANG Yaodong, et al. Algorithm of crack images matching by feature points set distance description[J]. Chinese Journal of Scientific Instrument, 2016, 37(12): 2851-2858. doi: 10.19650/j.cnki.cjsi.2016.12.027
    [6]
    MEDINA R, LLAMAS J, GÓMEZ-GARCÍA-BERMEJO J, et al. Crack detection in concrete tunnels using a Gabor filter invariant to rotation[J]. Sensors, 2017, 17(7): 1-16.
    [7]
    HUANG H W, LI Q T, ZHANG D M. Deep learning based image recognition for crack and leakage defects of metro shield tunnel[J]. Tunnelling and Underground Space Technology, 2018, 77: 166-176. doi: 10.1016/j.tust.2018.04.002
    [8]
    ATTARD L, DEBONO C J, VALENTINO G, et al. Tunnel inspection using photogrammetric techniques and image processing: a review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 144: 180-188. doi: 10.1016/j.isprsjprs.2018.07.010
    [9]
    PROTOPAPADAKIS E, VOULODIMOS A, DOULAMIS A, et al. Automatic crack detection for tunnel inspection using deep learning and heuristic image post-processing[J]. Applied Intelligence, 2019, 49(7): 2793-2806. doi: 10.1007/s10489-018-01396-y
    [10]
    CHA Y J, CHOI W, BÜYÜKÖZTÜRK O. Deep learning-based crack damage detection using convolutional neural networks[J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32(5): 361-378. doi: 10.1111/mice.12263
    [11]
    DORAFSHAN S, THOMAS R J, MAGUIRE M. Comparison of deep convolutional neural networks and edge detectors for image-based crack detection in concrete[J]. Construction and Building Materials, 2018, 186: 1031-1045. doi: 10.1016/j.conbuildmat.2018.08.011
    [12]
    LIU Z Q, CAO Y W, WANG Y Z, et al. Computer vision-based concrete crack detection using U-net fully convolutional networks[J]. Automation in Construction, 2019, 104: 129-139. doi: 10.1016/j.autcon.2019.04.005
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article views(403) PDF downloads(102) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return