• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
QIU Yanjun, WANG Guolong, YANG Enhui, YU Xiaoli, WANG Chenping. Crack Detection of 3D Asphalt Pavement Based on Multi-feature Test[J]. Journal of Southwest Jiaotong University, 2020, 55(3): 518-524. doi: 10.3969/j.issn.0258-2724.20180270
Citation: QIU Yanjun, WANG Guolong, YANG Enhui, YU Xiaoli, WANG Chenping. Crack Detection of 3D Asphalt Pavement Based on Multi-feature Test[J]. Journal of Southwest Jiaotong University, 2020, 55(3): 518-524. doi: 10.3969/j.issn.0258-2724.20180270

Crack Detection of 3D Asphalt Pavement Based on Multi-feature Test

doi: 10.3969/j.issn.0258-2724.20180270
  • Received Date: 09 Apr 2018
  • Rev Recd Date: 28 Dec 2018
  • Available Online: 04 Jan 2018
  • Publish Date: 01 Jun 2020
  • In order to solve the accuracy problems in the crack detection of 3D asphalt pavement, which are mainly caused by low contrast between cracks and the surrounding area and complex pavement textures, a three-step preprocessing was conducted on original 3D images firstly, including size reducing, intensity correction and Gaussian smoothing. Then, three predominant feature tests of tilt-level, Gaussian-distribution and edge-gradient were applied to the image profiles of four directions successively so as to obtain the crack profiles. Moreover, the crack profiles of four directions were merged and denoised to acquire the intact cracks. Finally, according to the roughness of pavement surface, a related parameter in the Gaussian-distribution test was adjusted to realize the crack detection of high accuracy. The experiment result indicates that the proposed algorithm can reach 89.19% of accuracy, 93.69% of recall and 91.06% of F-measure, which outperforms another two typical 3D recognition algorithms based on the theories of 3D shadowing and crack seeds.

     

  • WANG K C P. Design and implementations of automated systems for pavement surface distress survey[J]. Journal of Infrastructure Systems, 2000, 6(1): 24-32. doi: 10.1061/(ASCE)1076-0342(2000)6:1(24)
    FUKUHARA T, TERADA K, NAGAO M, et al. Automatic pavement-distress-survey system[J]. Journal of Transportation Engineering, 1990, 116(3): 280-286. doi: 10.1061/(ASCE)0733-947X(1990)116:3(280)
    ZHANG P, LI H. Recognition of pavement surface crack[C]//Sixth International Conference on Natural Computation. Yantai: IEEE, 2010: 3393-3396.
    AYENU-PRAH A, ATTOH-OKINE N. Evaluating pavement cracks with bidimensional empirical mode decomposition[J]. Eurasip Journal on Advances in Signal Processing, 2008, 2008(1): 861701.1-861701.7
    NGUYEN T S, AVILA M, BEGOT S. Automatic detection and classification of defect on road pavement using anisotropy measure[C]//Signal Processing Conference. Glasgow: IEEE, 2009: 617-621.
    彭博,WANG K C P,陈成,等. 基于各向异性测度的路面三维图像裂缝识别[J]. 西南交通大学学报,2014,49(5): 888-895. doi: 10.3969/j.issn.0258-2724.2014.05.023

    PENG Bo, WANG K C P, CHEN Cheng, et al. 3D pavement crack image detection based on anisotropy measure[J]. Journal of Southwest Jiaotong University, 2014, 49(5): 888-895. doi: 10.3969/j.issn.0258-2724.2014.05.023
    CHENG H D, SHI X J, GLAZIER C. Real-time image thresholding based on sample space reduction and interpolation approach[J]. Journal of Computing in Civil Engineering, 2003, 17(4): 264-272. doi: 10.1061/(ASCE)0887-3801(2003)17:4(264)
    王世芳,车艳丽,李楠,等. 一种基于多尺度脊边缘的沥青路面裂缝检测算法[J]. 中国公路学报,2017,30(4): 32-41. doi: 10.3969/j.issn.1001-7372.2017.04.005

    WANG Shifang, CHE Yanli, LI Nan, et al. Asphalt pavement crack detection algorithm based on multi-scale ridges[J]. China Journal of Highway and Transport, 2017, 30(4): 32-41. doi: 10.3969/j.issn.1001-7372.2017.04.005
    ZOU Qin, CAO Yu, LI Qingquan, et al. CrackTree:automatic crack detection from pavement images[J]. Pattern Recognition Letters, 2012, 33(3): 227-238. doi: 10.1016/j.patrec.2011.11.004
    WANG K C P. Elements of automated survey of pavements and a 3D methodology[J]. Journal of Modern Transportation, 2011, 19(1): 51-57. doi: 10.1007/BF03325740
    TSAI Y C J, LI F. Critical assessment of detecting asphalt pavement cracks under different lighting and low intensity contrast conditions using emerging 3D laser technology[J]. Journal of Transportation Engineering, 2012, 138(5): 649-656. doi: 10.1061/(ASCE)TE.1943-5436.0000353
    OUYANG W, XU B. Pavement cracking measurements using 3D laser-scan images[J]. Measurement Science & Technology, 2013, 24(10): 105204.1-105204.9.
    SOLLAZZO G, WANG K C P, BOSURGI G, et al. Hybrid procedure for automated detection of cracking with 3D pavement data[J]. Journal of Computing in Civil Engineering, 2016, 30(6): 04016032.1-04016032.12. doi: 10.1061/(ASCE)CP.1943-5487.0000597
    JIANG C, TSAI Y J. Enhanced crack segmentation algorithm using 3D pavement data[J]. Journal of Computing in Civil Engineering, 2016, 30(3): 04015050.1-04015050.10. doi: 10.1061/(ASCE)CP.1943-5487.0000526
    ZHANG A, WANG K C P, LI B, et al. Automated pixel-level pavement crack detection on 3D asphalt sur-faces using a deep-learning network[J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32(10): 805-819. doi: 10.1111/mice.12297
    彭博. 基于路面高精三维图像的裂缝自动识别与分类算法[D]. 成都: 西南交通大学, 2014.
    FUJITA Y, HAMAMOTO Y. A robust automatic crack detection method from noisy concrete surfaces[J]. Machine Vision and Applications, 2011, 22(2): 245-254. doi: 10.1007/s00138-009-0244-5
    SHAPIRO S, WILK M B. An analysis of variance test for normality (complete samples)[J]. Biometrika, 1965, 52: 591-611. doi: 10.1093/biomet/52.3-4.591
    GUPTA S D, PATTANAYAK A K. Intelligent image analysis (IIA) using artificial neural network (ANN) for non-invasive estimation of chlorophyll content in micropropagated plants of potato[J]. In Vitro Cellular & Developmental Biology−Plant, 2017(14): 1-7.
    彭博,WANG K C P,陈成,等. 基于1 mm精度路面三维图像的裂缝种子自动识别算法[J]. 中国公路学报,2014,27(12): 23-32. doi: 10.3969/j.issn.1001-7372.2014.12.004

    PENG Bo, WANG K C P, CHEN Cheng, et al. Automatic recognition for crack seeds based on 1 mm resolution 3D pavement images[J]. China Journal of Highway and Transport, 2014, 27(12): 23-32. doi: 10.3969/j.issn.1001-7372.2014.12.004
    ZHNAG A, WANG K C P, AI C. 3D shadow modeling for detection of descended patterns on 3D pavement surface[J]. Journal of Computing in Civil Engineering, 2017, 31(4): 04017019.1-04017019.13. doi: 10.1061/(ASCE)CP.1943-5487.0000661
  • Relative Articles

    [1]ZHANG Hong, JIANG Xiaogang, ZHU Zhiwei, XIA Runchuan, ZHOU Jianting. Review on Intelligent Image Recognition of Apparent Diseases of Stay Cable[J]. Journal of Southwest Jiaotong University, 2025, 60(1): 10-26. doi: 10.3969/j.issn.0258-2724.20220647
    [2]XIE Mingzhi, FAN Dingmeng, JIANG Zhipeng, DENG Fei, WANG Kun, HAN Chen, YANG Yongqing. Research Status and Prospects of Computer Vision-Based Crack Detection of Concrete Structure[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240115
    [3]WANG Yaodong, ZHU Liqiang, YU Zujun, SHI Hongmei, SHE Changmei. Intelligent Tunnel Crack Recognition Based on Automatic Sample Labeling[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1001-1008, 1036. doi: 10.3969/j.issn.0258-2724.20210092
    [4]ZHOU Ning, WANG Jundong, LIU Yueping, YANG Xuan, LI Yan, WU Zaixin, ZHANG Weihua. Image Processing Based Method for Measuring Contact Force in Pantograph-Catenary System[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 1-8, 57. doi: 10.3969/j.issn.0258-2724.20210509
    [5]LENG Biao, ZHANG Yi, YANG Hui, HOU Gaopeng. Rapid Recognition of Rock Mass Fractures in Tunnel Faces[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 246-252, 322. doi: 10.3969/j.issn.0258-2724.20190749
    [6]FAN Xinnan, WANG Jie, SHI Pengfei, LI Min. Pavement Crack Segmentation Algorithm Based on Pulse Coupled Neural Network with Brainstorming Optimization[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 572-578. doi: 10.3969/j.issn.0258-2724.20190354
    [7]WU Bo, WANG Qi, LIAO Haili, LI Yulin. Direct Identification of Coefficients of Rational Function Approximation for Self-Excited Aerodynamic Forces[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 247-255. doi: 10.3969/j.issn.0258-2724.20180593
    [8]LUO Wenting, LI Zhongyi, LI Lin, GAN Hong, GUO Jiangang. Automated Lane Marking Identification Based on Improved Canny Edge Detection Algorithm[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1253-1260. doi: 10.3969/j.issn.0258-2724.2018.06.022
    [9]CHEN De, HAN Sen, SU Qian. Study on Design Parameters of Aggregate Based on Surface Texture Characteristic of HMA[J]. Journal of Southwest Jiaotong University, 2017, 30(5): 943-948. doi: 10.3969/j.issn.0258-2724.2017.05.014
    [10]YANG Enhui, ZHANG Aonan, DING Shihai, WANG Kelvin C. P.. Automatic Detection Method for Highway Pavement Cracking Based on the 3D Shadow Modeling[J]. Journal of Southwest Jiaotong University, 2017, 30(2): 288-294. doi: 10.3969/j.issn.0258-2724.2017.02.011
    [11]LIU Junqing, LI Qian, WANG Baoshi. Numerical Model of Asphalt Pavement Considering Transversely Isotropic Fatigue Damage[J]. Journal of Southwest Jiaotong University, 2016, 29(4): 670-676. doi: 10.3969/j.issn.0258-2724.2016.04.010
    [12]LIU Yamin, HAN Sen, XU Ouming. Acquisition System for Three-Dimensional Surface Texture of Asphalt Pavement Based on Digital Image Processing[J]. Journal of Southwest Jiaotong University, 2014, 27(2): 351-357. doi: 10.3969/j.issn.0258-2724.2014.02.025
    [13]PENG Bo, WANG Kelvin C.P., CHEN Cheng, JIANG Yangsheng. 3D Pavement Crack Image Detection Based on Anisotropy Measure[J]. Journal of Southwest Jiaotong University, 2014, 27(5): 888-895. doi: 10.3969/j.issn.0258-2724.2014.05.023
    [14]BANG Dao-Beng, HUANG Chao, Aaron PACKMAN. Three-Dimensional Visualization of Arsenic Aggregates in Porous Media[J]. Journal of Southwest Jiaotong University, 2011, 24(6): 973-978. doi: 10.3969/j.issn.0258-2724.2011.06.014
    [15]LI Hengjian, YIN Zhongke, ZHANG Jiashu, WANG Jianying. Image Sparse Decomposition Based on Particle Swarm Optimization with Chaotic Mutation[J]. Journal of Southwest Jiaotong University, 2008, 21(4): 509-513.
    [16]PENG Qiang, ZHANG Xiaofei. Feature Vector-Based Nude Picture Detection[J]. Journal of Southwest Jiaotong University, 2007, 20(1): 13-18.
    [17]LI Hengjian, YIN Zhongke, WANG Jianying. Image Sparse Decomposition Based on Quantum Genetic Algorithm[J]. Journal of Southwest Jiaotong University, 2007, 20(1): 19-23.
    [18]WANGHong-xia, LUO Jian. SelfadaptiveW atermarking Synchrorization Scheme Based on Image Connectivity[J]. Journal of Southwest Jiaotong University, 2005, 18(6): 720-726.
    [19]HAO Yong-jie, LIUWen-yao, LUShuo. Spatial Correction of the Distorted License Plate Image of Automobiles[J]. Journal of Southwest Jiaotong University, 2002, 15(4): 417-420.
    [20]YANG Tian-wu, LIU Rong, PENG Qiang. Real-Time Video Technologies for MS-Windows[J]. Journal of Southwest Jiaotong University, 2002, 15(2): 172-176.
  • Cited by

    Periodical cited type(9)

    1. 钟洪卫,陈桂梅. 公路沥青路面裂缝检测方法及处治措施研究. 城市建设理论研究(电子版). 2024(11): 151-153 .
    2. 丁鹏,邹晔,郭祥龙,陈珣,鲁福硕. 复杂环境下多传感器信息融合的无人驾驶汽车智能悬架自动控制方法. 汽车安全与节能学报. 2023(03): 355-364 .
    3. 张恩华,王卫杰,段楠,康楠. 基于YOLOv5的湿润沥青路面裂缝检测. 计算机科学. 2023(S2): 396-400 .
    4. 徐康,马荣贵. 基于改进Faster-RCNN的沥青路面裂缝检测. 计算机系统应用. 2022(07): 341-348 .
    5. 李鹏程,孙立双,谢志伟,单佳强. 基于改进MobileNet-SSD的路面裂缝图像检测算法. 激光杂志. 2022(07): 123-127 .
    6. 韦春桃,朱旭阳,张冬梅. 基于深度分类的轻量级格网桥梁裂缝检测技术. 计算机工程与设计. 2022(08): 2334-2341 .
    7. 陈健昌,张志华. 融于图像多特征的路面裂缝智能化识别. 科学技术与工程. 2021(24): 10491-10497 .
    8. 封筠,赵颖,毕健康,赖柏江,胡晶晶. 多级卷积神经网络的沥青路面裂缝图像层次化筛选. 图学学报. 2021(05): 719-728 .
    9. 孙朝云,马志丹,李伟,郝雪丽,申浩. 基于深度卷积神经网络融合模型的路面裂缝识别方法. 长安大学学报(自然科学版). 2020(04): 1-13 .

    Other cited types(17)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 29.9 %FULLTEXT: 29.9 %META: 63.6 %META: 63.6 %PDF: 6.5 %PDF: 6.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.8 %其他: 8.8 %其他: 0.4 %其他: 0.4 %Central District: 0.6 %Central District: 0.6 %China: 0.7 %China: 0.7 %Richardson: 0.4 %Richardson: 0.4 %上海: 0.6 %上海: 0.6 %东莞: 2.6 %东莞: 2.6 %临汾: 0.3 %临汾: 0.3 %佛山: 0.1 %佛山: 0.1 %保定: 0.1 %保定: 0.1 %北京: 3.6 %北京: 3.6 %南京: 1.4 %南京: 1.4 %厦门: 0.7 %厦门: 0.7 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.3 %哥伦布: 0.3 %嘉兴: 0.1 %嘉兴: 0.1 %大连: 0.4 %大连: 0.4 %天津: 1.7 %天津: 1.7 %安阳: 0.3 %安阳: 0.3 %宣城: 0.1 %宣城: 0.1 %广州: 0.3 %广州: 0.3 %张家口: 2.5 %张家口: 2.5 %徐州: 0.1 %徐州: 0.1 %成都: 2.2 %成都: 2.2 %扬州: 0.3 %扬州: 0.3 %新乡: 0.1 %新乡: 0.1 %无锡: 0.1 %无锡: 0.1 %昆明: 0.1 %昆明: 0.1 %朝阳: 0.1 %朝阳: 0.1 %杭州: 2.6 %杭州: 2.6 %武汉: 0.6 %武汉: 0.6 %池州: 1.2 %池州: 1.2 %济南: 0.4 %济南: 0.4 %深圳: 1.0 %深圳: 1.0 %漯河: 0.7 %漯河: 0.7 %石家庄: 2.5 %石家庄: 2.5 %石河子: 0.1 %石河子: 0.1 %芒廷维尤: 14.2 %芒廷维尤: 14.2 %芜湖: 0.3 %芜湖: 0.3 %芝加哥: 0.7 %芝加哥: 0.7 %衡阳: 0.1 %衡阳: 0.1 %西宁: 35.9 %西宁: 35.9 %西安: 2.2 %西安: 2.2 %贵阳: 0.1 %贵阳: 0.1 %达州: 0.1 %达州: 0.1 %运城: 0.7 %运城: 0.7 %连云港: 0.3 %连云港: 0.3 %邯郸: 0.4 %邯郸: 0.4 %郑州: 0.3 %郑州: 0.3 %重庆: 1.7 %重庆: 1.7 %长沙: 2.9 %长沙: 2.9 %青岛: 1.0 %青岛: 1.0 %其他其他Central DistrictChinaRichardson上海东莞临汾佛山保定北京南京厦门哈尔滨哥伦布嘉兴大连天津安阳宣城广州张家口徐州成都扬州新乡无锡昆明朝阳杭州武汉池州济南深圳漯河石家庄石河子芒廷维尤芜湖芝加哥衡阳西宁西安贵阳达州运城连云港邯郸郑州重庆长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(3)

    Article views(837) PDF downloads(50) Cited by(26)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return