Citation: | YANG Gang, LI Hengchao, TAN Bei, SHI Chaoqun, ZHANG Xueqin, GUO Yujun, WU Guangning. Application of Hierarchical Extreme Learning Machine in Prediction of Insulator Pollution Degree Using Hyperspectral Images[J]. Journal of Southwest Jiaotong University, 2020, 55(3): 579-587. doi: 10.3969/j.issn.0258-2724.20190093 |
汪万平,陈伟根,刘凡,等. 基于泄漏电流特征信息及概率神经网络的绝缘子污秽度预测模型[J]. 高压电器,2017,53(9): 198-203.
WANG Wanping, CHEN Weigen, LIU Fan, et al. Con-tamination level forecast model of insulators based on leakage current characteristics and probabilistic neural network[J]. High Voltage Apparatus, 2017, 53(9): 198-203.
|
王健,杨志超,葛乐,等. 基于BP神经网络和模糊逻辑的绝缘子污秽等级预测[J]. 南京工程学院学报(自科版),2013,11(4): 17-22.
WANG Jian, YANG Zhichao, GE Le, et al. Prediction of insulator pollution severity class based on BP neural network and fuzzy logic[J]. Journal of Nanjing Institute of Technology (Natural Science Edition), 2013, 11(4): 17-22.
|
文志科,孔晨华,闵绚,等. 高光谱遥感检测复合绝缘子运行状态技术研究[J]. 高压电器,2014,50(2): 75-79.
WEN Zhike, KONG Chenhua, MIN Xuan, et al. Working state detection of composite insulator by hyperspectral remote sensing[J]. High Voltage Apparatus, 2014, 50(2): 75-79.
|
黄锋华,张淑娟,杨一,等. 油桃外部缺陷的高光谱成像检测[J]. 农业机械学报,2015,46(11): 252-259. doi: 10.6041/j.issn.1000-1298.2015.11.034
HUANG Fenghua, ZHANG Shujuan, YANG Yi, et al. Application of hyperspectral imaging for detection of de-fective features in nectarine fruit[J]. Transactions of the Chinese Society of Agricultural Machine, 2015, 46(11): 252-259. doi: 10.6041/j.issn.1000-1298.2015.11.034
|
岳学军,全东平,洪添胜,等. 柑橘叶片叶绿素含量高光谱无损检测模型[J]. 农业工程学报,2015,31(1): 294-302. doi: 10.3969/j.issn.1002-6819.2015.01.039
YUE Xuejun, QUAN Dongping, HONG Tiansheng, et al. Non-destructive hyperspectral measurement model of chlorophyll content for citrus leaves[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(1): 294-302. doi: 10.3969/j.issn.1002-6819.2015.01.039
|
易秋香,黄敬峰,王秀珍. 玉米粗纤维含量高光谱估算模型研究[J]. 红外与毫米波学报,2007,26(5): 393-395. doi: 10.3321/j.issn:1001-9014.2007.05.018
YI Qiuxiang, HUANG Jingfeng, WANG Xiuzhen. Hyper-spectral estimation models for crude fibre concentration of corn[J]. Journal of Infrared and Millimeter Waves, 2007, 26(5): 393-395. doi: 10.3321/j.issn:1001-9014.2007.05.018
|
张初,刘飞,章海亮,等. 近地高光谱成像技术对黑豆品种无损鉴别[J]. 光谱学与光谱分析,2014,34(3): 746-750. doi: 10.3964/j.issn.1000-0593(2014)03-0746-05
ZHANG Chu, LIU Fei, ZHANG Hailiang, et al. Identifi-cation of varieties of black bean using ground based hyperspectral imaging[J]. Spectroscopy and Spectral Analysis, 2014, 34(3): 746-750. doi: 10.3964/j.issn.1000-0593(2014)03-0746-05
|
贾仕强,刘哲,李绍明,等. 基于高光谱图像技术的玉米杂交种纯度鉴定方法探索[J]. 光谱学与光谱分析,2013,33(10): 2847-2852. doi: 10.3964/j.issn.1000-0593(2013)10-2847-06
JIA Shiqiang, LIU Zhe, LI Shaoming, et al. Study on method of maize hybrid purity identification based on hyperspectral image technology[J]. Spectroscopy and Spectral Analysis, 2013, 33(10): 2847-2852. doi: 10.3964/j.issn.1000-0593(2013)10-2847-06
|
李庆利,薛永祺,王建宇,等. 高光谱成像系统在中医舌诊中的应用研究[J]. 红外与毫米波学报,2006,25(6): 465-468. doi: 10.3321/j.issn:1001-9014.2006.06.016
LI Qingli, XUE Yongqi, WANG Jianyu, et al. Application of hyperspectral imaging system in tongue analysis of tradi-tional chinese medicine[J]. Journal of Infrared and Millimeter Waves, 2006, 25(6): 465-468. doi: 10.3321/j.issn:1001-9014.2006.06.016
|
周霄,高峰,张爱武,等. VIS/NIR高光谱成像在中国云冈石窟砂岩风化状况分布研究中的进展[J]. 光谱学与光谱分析,2012,32(3): 790-794. doi: 10.3964/j.issn.1000-0593(2012)03-0790-05
ZHOU Xiao, GAO Feng, ZHANG Aiwu, et al. Advance in the study of the powdered weathering profile of sand-stone on china yungang grottoes based on VIS/NIR hyperspectral imaging[J]. Spectroscopy and Spectral Analysis, 2012, 32(3): 790-794. doi: 10.3964/j.issn.1000-0593(2012)03-0790-05
|
孙美君,柴勃隆,张冬,等. 基于近红外高光谱技术的敦煌莫高窟壁画起甲病害风险评估方法[J]. 文物保护与考古科学,2016,28(4): 1-8.
SUN Meijun, CHAI Bolong, ZHANG Dong, et al. As-sessing the degree of flaking of the murals in the Dunhuang Mogao Grottoes using near-infrared hyper-spectral imaging[J]. Sciences of Conservation and Ar-chaeology, 2016, 28(4): 1-8.
|
邵瑰玮,付晶,陈怡,等. 基于图谱特征的复合绝缘子老化神经网络评估方法[J]. 高电压技术,2014,40(3): 861-867.
SHAO Guiwei, FU Jing, CHEN Yi, et al. Aging assess-ment method of composite insulator using neural network based on image and spectra characteristics[J]. High Voltage Engineering, 2014, 40(3): 861-867.
|
向文祥,王星超,罗洋,等. 复合绝缘子粉化状态非接触检测技术研究[J]. 中国电业(技术版),2015(10): 3-5. doi: 10.3969/j.issn.1002-1140.2015.11.002
XIANG Wenxiang, WANG Xingchao, LUO Yang, et al. Research of composite insulator powder status non-contact detection technology[J]. China Electric Power (Technology Edition), 2015(10): 3-5. doi: 10.3969/j.issn.1002-1140.2015.11.002
|
孙志军,薛磊,许阳明,等. 深度学习研究综述[J]. 计算机应用研究,2012,29(8): 2806-2810. doi: 10.3969/j.issn.1001-3695.2012.08.002
SUN Zhijun, XUE Lei, XU Yangming, et al. Overview of deep learning[J]. Application Research of Computers, 2012, 29(8): 2806-2810. doi: 10.3969/j.issn.1001-3695.2012.08.002
|
王璨,武新慧,李恋卿,等. 卷积神经网络用于近红外光谱预测土壤含水率[J]. 光谱学与光谱分析,2018,38(1): 36-41.
WANG Can, WU Xinhui, LI Lianqiang, et al. Convolu-tional neural network application in prediction of soil moisture content[J]. Spectroscopy and Spectral Analysis, 2018, 38(1): 36-41.
|
HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine:theory and applications[J]. Neurocomputing, 2006, 70: 489-501. doi: 10.1016/j.neucom.2005.12.126
|
TANG J, DENG C, HUANG G B. Extreme learning machine for multilayer perceptron[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(4): 809-821. doi: 10.1109/TNNLS.2015.2424995
|
BECK A, TEBOULLE M A. Fast iterative shrink-age-thresholding algorithm for linear inverse problems[J]. Siam Journal on Imaging Sciences, 2009, 2(1): 183-202. doi: 10.1137/080716542
|
国家电网公司. 电力系统污区分级与外绝缘选择标准: Q/GDW 152—2006[S]. 北京: 中国电力出版社, 2006.
|
李佐胜,姚建刚,杨迎建,等. 绝缘子污秽等级红外热像检测的视角影响分析[J]. 高电压技术,2008,34(11): 2327-2331.
LI Zuosheng, YAO Jiangang, YANG Yingjian, et al. Analysis of visual angle influence on infrared thermal image detecting of insulator contamination grades[J]. High Voltage Engineering, 2008, 34(11): 2327-2331.
|
刘平,马美湖. 基于高光谱技术检测全蛋粉掺假的研究[J]. 光谱学与光谱分析,2018,38(1): 246-252.
LIU Ping, MA Meihu. Application of hyperspectral technology for detecting adulterated whole egg powder[J]. Spectroscopy and Spectral Analysis, 2018, 38(1): 246-252.
|