Citation: | XIANG Yu, CONG Deming, ZHANG Yang, YUAN Fei. Two-Stream Neural Network Fusion Model for Highway Fog Detection[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 173-179. doi: 10.3969/j.issn.0258-2724.20180205 |
孙刚,陈陶,李建林. 高速路雾天行车诱导系统道路能见度检测装置[J]. 科技通报,2015(12): 164-166 doi: 10.3969/j.issn.1001-7119.2015.12.060
SUN Gang, CHEN Tao, LI Jianlin. Highway foggy road guidance system road visibility testing device[J]. Technology Bulletin, 2015(12): 164-166 doi: 10.3969/j.issn.1001-7119.2015.12.060
|
包左军, 汤窃巧, 李长城, 等. 公路交通安全与气象影响[M]. 北京: 人民交通出版社, 2008: 57-63
|
张巧汉, 何勇, 刘洪肩, 等. 商速公路雾区交通安全保暗技术[M]. 北京: 人民交通出版社, 2009: 38
|
BRONTE S, BERGASA L M, ALCANTARILLA P F. Fog detection system based on computer vision techniques[C]//Intelligent Transportation Systems Conference. [S.l.]: IEEE, 2009: 1-6
|
PAVLIC M, BELZNER H, RIGOLL G, et al. Image based fog detection in vehicles[C]//Proceedings of IEEE Intelligent Vehicles Symposium. [S.l.]: IEEE, 2012: 1132-1137
|
TAN R T. Visibility in bad weather from a single image[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2008. [S.l.]: IEEE, 2008: 1-8
|
HAUTIERE N, LABAYRADE R, AUBERT D. Real-time disparity contrast combination for onboard estimation of the visibility distance[J]. IEEE Transactions on Intelligent Transportation System, 2006, 7(2): 201-212 doi: 10.1109/TITS.2006.874682
|
BUSCH C, DEBES E. Wavelet transform for analyzing fog visibility[J]. IEEE Intelligent Systems, 1998, 13(6): 66-71 doi: 10.1109/5254.736004
|
SCHECHNER Y Y, NARASIMHAN S G, NAYAR S K. Polarization based vision through haze[J]. Appl. Opt., 2003, 42(3): 511-525 doi: 10.1364/AO.42.000511
|
NARASIMHAN S G, NAYAR S K. Contrast restoration of weather degraded images[J]. IEEE Trans. Pattern Anal. Mach. Intell., 2003, 25(6): 713-724 doi: 10.1109/TPAMI.2003.1201821
|
NAYAR S K, NARASIMHAN S G. Vision in bad weather[J]. Proc. 7th IEEE ICCV, 1999, 2(6): 820-827
|
NARASIMHAN S G, NAYAR S K. Removing weather effects from monochrome images[J]. Proc. IEEE Conf. CVPR, 2001, 2(6): 186-193
|
ROBERT G H, MATTHEWS M P, PISANO P A. Automated extraction of weather variables from camera imagery[C]//Proceedings of the Mid-Continent Transportation Research Symposium. Ames: [s.n.], 2005: 1031-1043
|
ROBERT G H, MICHAEL P M. Using camera imagery to measure visibility & fog[R]. Ames: For FHWA Presentation, 2001
|
ROBERT G H, MICHAEL P M. Clarus research: visibility estimation from camera imagery[R]. Ames: For FHWA CLARUS Meeting, 2006
|
BAUMER D, VERSICK S, VOGEL B. Determination of the visibility using a digital panorama camera[J]. Atmospheric Environment, 2008, 42: 2593-2602 doi: 10.1016/j.atmosenv.2007.06.024
|
ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]//European Conference on Computer Vision. [S.l.]: Springer, 2014: 818-833
|
REN S, CAO X, WEI Y, et al. Face alignment at 3000 FPS via regressing local binary features[C]//Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2014: 1685-1692
|
REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal network[C]//International Conference on Neural Information Processing Systems. Boston: MIT Press, 2015: 91-99
|
SIMONYAN K, ZISSERMAN A. Two-stream convolutional networks for action recognition in videos[C]//International Conference on Neural Information Processing Systems. Boston: MIT Press, 2014: 568-576
|
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neuralnetworks[C]//Advances in Neural Information Processing Systems. [S.l.]: ACM, 2012: 1097-1105
|
ZEILER M D, FERGUS R.Visualizing and understanding convolutional networks[C]//European Conference on Computer Vision. [S.l.]: Springer International Publishing, 2014: 818-833
|
SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2015: 1-9
|
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2016: 770-778
|
HUANG G, LIU Z, MAATEN L V D, et al. Densely connected convolutional network[C]//IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE Computer Society, 2017: 2261-2269
|
CAI B, XU X, JIA K, et al. DehazeNet:an end-to-end system for single image haze removal[J]. IEEE Transactions on Image Processing, 2016, 25(11): 5187-5198 doi: 10.1109/TIP.2016.2598681
|
REN W, LIU S, ZHANG H, et al. Single image dehazing via multi-scale convolutional neural networks[M]//Computer Vision-ECCV 2016. [S.l.]: Springer International Publishing, 2016: 154-169
|
HE K, SUN J, TANG X. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2011, 33(12): 2341-2353
|
LAINA I, RUPPRECHT C, BELAGIANNIS V, et al. Deeper depth prediction with fully convolutional residual networks[C]//Fourth International Conference on 3D Vision. [S.l.]: IEEE, 2016: 239-248
|
JIA, Y, SHELHAMER E, DONAHUE J, et al. Caffe: convolutional architecture for fast feature embeddi-ng[C]//Proceedings of the 22nd ACM international conference on Multimedia. Orlando: ACM, 2014: 675-678
|