• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 54 Issue 1
Feb.  2019
Turn off MathJax
Article Contents
XIANG Yu, CONG Deming, ZHANG Yang, YUAN Fei. Two-Stream Neural Network Fusion Model for Highway Fog Detection[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 173-179. doi: 10.3969/j.issn.0258-2724.20180205
Citation: XIANG Yu, CONG Deming, ZHANG Yang, YUAN Fei. Two-Stream Neural Network Fusion Model for Highway Fog Detection[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 173-179. doi: 10.3969/j.issn.0258-2724.20180205

Two-Stream Neural Network Fusion Model for Highway Fog Detection

doi: 10.3969/j.issn.0258-2724.20180205
  • Received Date: 20 Mar 2018
  • Rev Recd Date: 28 May 2018
  • Available Online: 01 Jun 2018
  • Publish Date: 01 Feb 2019
  • The real-time detection of weather conditions on highways has a significant impact on high-speed traffic safety. However, the weather forecast reports weather conditions over a wide range of areas only, which cannot meet the demand of real-time detection of weather conditions in various sections of high-speed traffic. Therefore, we present here a two-stream neural network fusion model for fog detection, which detect current weather condition for the surveillance area automatically. This model is based on a dual branches of deep neural networks, which integrates visual depth maps and dark-channel images for fog detection. These two modalities of features are discriminative in representing the pattern of fog and extracted from the surveillance video frame. The intermediate scores produced by the neural networks are fed into a mean fusion layer for the final prediction. To comprehensively evaluate the performance of our algorithm, we built an Express Way Fog Detection dataset (EWFD), which covers highway scenes across multiple provinces of China. A variety of highway weather conditions are contained in the EWFD. We conducted a comprehensive analysis and comparison experiment on the EWFD dataset. The results of the experiment also demonstrate that the two-stream neural network fusion model proposed here achieved an accuracy of 93.7%, which is a more than 10% improvement compared to the state-of-the-art classification method ResNet-101.

     

  • loading
  • 孙刚,陈陶,李建林. 高速路雾天行车诱导系统道路能见度检测装置[J]. 科技通报,2015(12): 164-166 doi: 10.3969/j.issn.1001-7119.2015.12.060

    SUN Gang, CHEN Tao, LI Jianlin. Highway foggy road guidance system road visibility testing device[J]. Technology Bulletin, 2015(12): 164-166 doi: 10.3969/j.issn.1001-7119.2015.12.060
    包左军, 汤窃巧, 李长城, 等. 公路交通安全与气象影响[M]. 北京: 人民交通出版社, 2008: 57-63
    张巧汉, 何勇, 刘洪肩, 等. 商速公路雾区交通安全保暗技术[M]. 北京: 人民交通出版社, 2009: 38
    BRONTE S, BERGASA L M, ALCANTARILLA P F. Fog detection system based on computer vision techniques[C]//Intelligent Transportation Systems Conference. [S.l.]: IEEE, 2009: 1-6
    PAVLIC M, BELZNER H, RIGOLL G, et al. Image based fog detection in vehicles[C]//Proceedings of IEEE Intelligent Vehicles Symposium. [S.l.]: IEEE, 2012: 1132-1137
    TAN R T. Visibility in bad weather from a single image[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2008. [S.l.]: IEEE, 2008: 1-8
    HAUTIERE N, LABAYRADE R, AUBERT D. Real-time disparity contrast combination for onboard estimation of the visibility distance[J]. IEEE Transactions on Intelligent Transportation System, 2006, 7(2): 201-212 doi: 10.1109/TITS.2006.874682
    BUSCH C, DEBES E. Wavelet transform for analyzing fog visibility[J]. IEEE Intelligent Systems, 1998, 13(6): 66-71 doi: 10.1109/5254.736004
    SCHECHNER Y Y, NARASIMHAN S G, NAYAR S K. Polarization based vision through haze[J]. Appl. Opt., 2003, 42(3): 511-525 doi: 10.1364/AO.42.000511
    NARASIMHAN S G, NAYAR S K. Contrast restoration of weather degraded images[J]. IEEE Trans. Pattern Anal. Mach. Intell., 2003, 25(6): 713-724 doi: 10.1109/TPAMI.2003.1201821
    NAYAR S K, NARASIMHAN S G. Vision in bad weather[J]. Proc. 7th IEEE ICCV, 1999, 2(6): 820-827
    NARASIMHAN S G, NAYAR S K. Removing weather effects from monochrome images[J]. Proc. IEEE Conf. CVPR, 2001, 2(6): 186-193
    ROBERT G H, MATTHEWS M P, PISANO P A. Automated extraction of weather variables from camera imagery[C]//Proceedings of the Mid-Continent Transportation Research Symposium. Ames: [s.n.], 2005: 1031-1043
    ROBERT G H, MICHAEL P M. Using camera imagery to measure visibility & fog[R]. Ames: For FHWA Presentation, 2001
    ROBERT G H, MICHAEL P M. Clarus research: visibility estimation from camera imagery[R]. Ames: For FHWA CLARUS Meeting, 2006
    BAUMER D, VERSICK S, VOGEL B. Determination of the visibility using a digital panorama camera[J]. Atmospheric Environment, 2008, 42: 2593-2602 doi: 10.1016/j.atmosenv.2007.06.024
    ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]//European Conference on Computer Vision. [S.l.]: Springer, 2014: 818-833
    REN S, CAO X, WEI Y, et al. Face alignment at 3000 FPS via regressing local binary features[C]//Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2014: 1685-1692
    REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal network[C]//International Conference on Neural Information Processing Systems. Boston: MIT Press, 2015: 91-99
    SIMONYAN K, ZISSERMAN A. Two-stream convolutional networks for action recognition in videos[C]//International Conference on Neural Information Processing Systems. Boston: MIT Press, 2014: 568-576
    KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neuralnetworks[C]//Advances in Neural Information Processing Systems. [S.l.]: ACM, 2012: 1097-1105
    ZEILER M D, FERGUS R.Visualizing and understanding convolutional networks[C]//European Conference on Computer Vision. [S.l.]: Springer International Publishing, 2014: 818-833
    SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2015: 1-9
    HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2016: 770-778
    HUANG G, LIU Z, MAATEN L V D, et al. Densely connected convolutional network[C]//IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE Computer Society, 2017: 2261-2269
    CAI B, XU X, JIA K, et al. DehazeNet:an end-to-end system for single image haze removal[J]. IEEE Transactions on Image Processing, 2016, 25(11): 5187-5198 doi: 10.1109/TIP.2016.2598681
    REN W, LIU S, ZHANG H, et al. Single image dehazing via multi-scale convolutional neural networks[M]//Computer Vision-ECCV 2016. [S.l.]: Springer International Publishing, 2016: 154-169
    HE K, SUN J, TANG X. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2011, 33(12): 2341-2353
    LAINA I, RUPPRECHT C, BELAGIANNIS V, et al. Deeper depth prediction with fully convolutional residual networks[C]//Fourth International Conference on 3D Vision. [S.l.]: IEEE, 2016: 239-248
    JIA, Y, SHELHAMER E, DONAHUE J, et al. Caffe: convolutional architecture for fast feature embeddi-ng[C]//Proceedings of the 22nd ACM international conference on Multimedia. Orlando: ACM, 2014: 675-678
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article views(471) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return