• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 28 Issue 2
Apr.  2015
Turn off MathJax
Article Contents
QIN Zhentao, YANG Wunian, YANG Ru, PAN Peifen, DENG Cong. Hyperspectral Image Classification Based on Structured Dictionary Learning[J]. Journal of Southwest Jiaotong University, 2015, 28(2): 336-341. doi: 10.3969/j.issn.0258-2724.2015.02.020
Citation: QIN Zhentao, YANG Wunian, YANG Ru, PAN Peifen, DENG Cong. Hyperspectral Image Classification Based on Structured Dictionary Learning[J]. Journal of Southwest Jiaotong University, 2015, 28(2): 336-341. doi: 10.3969/j.issn.0258-2724.2015.02.020

Hyperspectral Image Classification Based on Structured Dictionary Learning

doi: 10.3969/j.issn.0258-2724.2015.02.020
  • Received Date: 10 Apr 2014
  • Publish Date: 25 Apr 2015
  • In order to improve the classification accuracy of hyperspectral images, a new structured dictionary-based method for hyperspectral image classification was proposed. This method incorporates both spatial and spectral characteristics of hyperspectral images to obtain a dictionary of each pixel, the pixels in an identical pixel group have a common sparsity pattern;image sparsity representation coefficients are calculated in light of the dictionary to gain sparse representation features of hyperspectral images;the classification of hyperspectral images is determined using a linear support vector machine. Experiments on AVIRIS and ROSIS hyperspectral images were carried out. The experimental results show that compared with the common dictionary learning, the classification accuracy is respectively raised by 0.041 1 and 0.046 6, the Kappa coefficient is improved by 0.179 3 and 0.056 3, respectively.

     

  • loading
  • SHAW G, MANOLAKIS D. Signal processing for hyperspectral image exploitation
    PLAZA A, BENEDIKTSSON J A, BOARDMAN J, et al. Recent advances in techniques for hyperspectral image processing
    [J]. IEEE Signal Processing Magazine, 2002, 19(1): 12-16.
    ROBINSON R K, JENNINGS S A. Hyperspectral imaging on the international space station: an innovative approach to commercial development of space
    TURK M, PENTLAND A. Eigenfaces for recogni-tion
    [J]. Remote Sensing of Environment, 2009, 113(9): 110-122.
    BELHUMEUR P N, HESPANHA J P, KRIEGMAN D J. Eigenfaces vs. Fisherfaces: recognition using class specific linear projection
    [J]. American Institute of Aeronautics and Astronautics, 2004(9): 1-8.
    LI J, BIOUCAS-DIAS J M, PLAZA A. Spectral-spatial classification of hyperspectral data using loopy belief propagation and active learning
    BAZI Y, MELGANI F. Toward an optimal SVM classification system for hyperspectral remote sensing images
    IORDACHE M D, BIOUCAS-DIAS J M, PLAZA A. Sparse unmixing of hyperspectral data
    [J]. Journal of Cognitive Neuroscience, 1991, 3(1): 71-86.
    CHARLES A S, OLSHAUSEN B A, ROZELL C J. Learning sparse codes for hyperspectral imagery
    [J]. IEEE Transactions on Pattern Analysis and Machine, 1997, 19(7): 711-720.
    SOLTANI-FARANI A, RABIEE H R, HOSSEINI S A. Spatial-aware dictionary learning for hyperspectral image classification
    COTTER S F, RAO B D, ENGAN K, et al. Sparse solutions to linear inverse problems with multiple measurement vectors
    MAIRAL J, BACH F, PONCE J, et al. Online learning for matrix factorization and sparse coding
    [J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(2): 844-856.
    宋相法,焦李成. 基于稀疏表示及光谱信息的高光谱遥感图像分类
    宋琳,程咏梅,赵永强. 基于稀疏表示模型和自回归模型的高光谱分类
    [J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(11): 3374-3385.
    TIBSHIRANI R. Regression shrinkage and selection via the lasso
    [J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(6): 2014-2039.
    [J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(5): 963-978.
    [J]. IEEE Transactions on geoscience and remote sensing, 2015, 53(1): 527-541.
    [J]. IEEE Transactions on Signal Processing, 2005, 53(7): 2477-2488.
    [J]. Journal of Machine Learning Research, 2010, 11(1): 19-60.
    [J]. 电子与信息学报,2012,34(2): 268-272. SONG Xiangfa, JIAO Licheng. Classification of hyperspectral remote sensing image based on sparse representation and spectral
    [J]. Information Journal of Electronics Information Technology, 2012, 34(2): 268-272.
    [J]. 光学学报,2012,32(3): 314-320. SONG Lin, CHEN Yongmei, ZHAO Yongqiang, Hyper-spectrum classification based on sparse representation model and auto-regressive model
    [J]. Acta Optica Sinica, 2012, 32(3): 314-320.
    [J]. Journal of the Royal Statistical Society: Series B, 1996, 58(1): 267-288.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(886) PDF downloads(577) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return