• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
JIANG Yangsheng, LIU Meng, WANG Sichen, GAO Kuan, YAO Zhihong. Trajectory Reconstruction for Traffic Flow Mixed withConnected Automated Vehicles Based on Car-Following Characteristics[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1135-1142. doi: 10.3969/j.issn.0258-2724.20200735
Citation: JIANG Yangsheng, LIU Meng, WANG Sichen, GAO Kuan, YAO Zhihong. Trajectory Reconstruction for Traffic Flow Mixed withConnected Automated Vehicles Based on Car-Following Characteristics[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1135-1142. doi: 10.3969/j.issn.0258-2724.20200735

Trajectory Reconstruction for Traffic Flow Mixed withConnected Automated Vehicles Based on Car-Following Characteristics

doi: 10.3969/j.issn.0258-2724.20200735
  • Received Date: 10 Nov 2020
  • Rev Recd Date: 13 Jan 2021
  • Available Online: 15 Apr 2021
  • Publish Date: 15 Apr 2021
  • Vehicle trajectory data contains massive spatial-temporal traffic information, which is one of the necessary data for traffic state estimation. To solve the problem that it's difficult to obtain the fully sampled vehicular trajectory in the existing data collection environment, oriented to the connected and automated environment, a fully sampled trajectory reconstruction model of mixed traffic flow is proposed . Firstly, vehicle composition and trajectory data collection environment of mixed traffic flow with the connected automated vehicle (CAV) are analyzed. Then, a vehicle trajectory reconstruction model is proposed based on intelligent driver car-following model. Based on this, the number of inserted trajectories, trajectory position and speed are estimated. Finally, numerical simulation is designed to investigate the influence of traffic density and penetration rate of CAVs. Results show that, when the penetration rates of CAV and connected vehicle (CV) at 8% and 20%, respectively, the model can reconstruct more than 84% vehicular trajectories under different traffic densities. The accuracy of the reconstructed trajectories increases with the increase in penetration rates of CAV and CV. Besides, when the traffic density is 70 veh/km and the penetration rate of CAV at a low level of 4%, the proposed model can reconstruct 82% vehicular trajectories.

     

  • [1]
    BANSAL P, KOCKELMAN K M. Forecasting Americans’ long-term adoption of connected and autonomous vehicle technologies[J]. Transportation Research Part A:Policy and Practice, 2017, 95: 49-63. doi: 10.1016/j.tra.2016.10.013
    [2]
    PUNZO V, BORZACCHIELLO M T, CIUFFO B. On the assessment of vehicle trajectory data accuracy and application to the Next Generation SIMulation (NGSIM) program data[J]. Transportation Research Part C:Emerging Technologies, 2011, 19(6): 1243-1262. doi: 10.1016/j.trc.2010.12.007
    [3]
    COIFMAN B. Estimating travel times and vehicle trajectories on freeways using dual loop detectors[J]. Transportation Research Part A:Policy and Practice, 2002, 36(4): 351-364. doi: 10.1016/S0965-8564(01)00007-6
    [4]
    RAO W M, WU Y J, XIA J X, et al. Origin-destination pattern estimation based on trajectory reconstruction using automatic license plate recognition data[J]. Transportation Research Part C:Emerging Technologies, 2018, 95: 29-46. doi: 10.1016/j.trc.2018.07.002
    [5]
    HAO P, BORIBOONSOMSIN K, WU G Y, et al. Modal activity-based stochastic model for estimating vehicle trajectories from sparse mobile sensor data[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(3): 701-711. doi: 10.1109/TITS.2016.2584388
    [6]
    WAN N F, VAHIDI A, LUCKOW A. Reconstructing maximum likelihood trajectory of probe vehicles between sparse updates[J]. Transportation Research Part C:Emerging Technologies, 2016, 65: 16-30. doi: 10.1016/j.trc.2016.01.010
    [7]
    SHAN X N, HAO P, CHEN X H, et al. Vehicle energy/emissions estimation based on vehicle trajectory reconstruction using sparse mobile sensor data[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(2): 716-726. doi: 10.1109/TITS.2018.2826571
    [8]
    LI Z, KLUGER R, HU X B, et al. Reconstructing vehicle trajectories to support travel time estimation[J]. Transportation Research Record:Journal of the Transportation Research Board, 2018, 2672(42): 148-158. doi: 10.1177/0361198118772956
    [9]
    XIE X, VAN LINT H, VERBRAECK A. A generic data assimilation framework for vehicle trajectory reconstruction on signalized urban arterials using particle filters[J]. Transportation Research Part C:Emerging Technologies, 2018, 92: 364-391. doi: 10.1016/j.trc.2018.05.009
    [10]
    MEHRAN B, KUWAHARA M, NAZNIN F. Implementing kinematic wave theory to reconstruct vehicle trajectories from fixed and probe sensor data[J]. Transportation Research Part C:Emerging Technologies, 2012, 20(1): 144-163. doi: 10.1016/j.trc.2011.05.006
    [11]
    唐克双,徐天祥,潘昂,等. 基于定点检测数据的城市干道车辆轨迹重构[J]. 同济大学学报(自然科学版),2016,44(10): 1545-1552.

    TANG Keshuang, XU Tianxiang, PAN Ang, et al. Signal timing and detector data-based reconstruction of vehicle trajectories on urban arterials[J]. Journal of Tongji University (Natural Science), 2016, 44(10): 1545-1552.
    [12]
    王昊, 金诚杰. 交通流理论及应用[M]. 北京: 人民交通出版社, 2020: 50-79.
    [13]
    WANG Y P, WEI L, CHEN P. Trajectory reconstruction for freeway traffic mixed with human-driven vehicles and connected and automated vehicles[J]. Transportation Research Part C: Emerging Technologies, 2020, 111: 135-155. doi: 10.1016/j.trc.2019.12.002
    [14]
    TALEBPOUR A, MAHMASSANI H S. Influence of connected and autonomous vehicles on traffic flow stability and throughput[J]. Transportation Research Part C: Emerging Technologies, 2016, 71: 143-163. doi: 10.1016/j.trc.2016.07.007
    [15]
    YAO Z H, XU T R, JIANG Y S, et al. Linear stability analysis of heterogeneous traffic flow considering degradations of connected automated vehicles and reaction time[J]. Physica A:Statistical Mechanics and Its Applications, 2021, 561: 125218.1-125218.15. doi: 10.1016/j.physa.2020.125218
    [16]
    MILANÉS V, SHLADOVER S E. Modeling cooperative and autonomous adaptive cruise control dynamic responses using experimental data[J]. Transportation Research Part C:Emerging Technologies, 2014, 48: 285-300. doi: 10.1016/j.trc.2014.09.001
  • Relative Articles

    [1]WANG Yanchen, YANG Fei, LI Rongling, ZHOU Tao. Influence of Location Frequency on Travel Mode Extraction Using Cellular Phone Data[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1158-1166. doi: 10.3969/j.issn.0258-2724.20220136
    [2]YANG Tao, MA Yuqin, LIU Meng, YAO Zhihong, JIANG Yangsheng. Vehicle Trajectory Reconstruction Model of Signalized Intersection in Connected Automated Environments[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1148-1157. doi: 10.3969/j.issn.0258-2724.20220321
    [3]WU Dehua, PENG Rui, CHEN Rongfeng. Hybrid Characteristics of Heterogeneous Traffic Flow Under Different Aggregating Lane-Change Strategies in Intelligent Network[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 348-356. doi: 10.3969/j.issn.0258-2724.20211035
    [4]YANG Da, YANG Guo, LUO Xu, TANG Yandong, XU Lihua, PU Yun. Behavior Decision of Intelligent Connected Vehicles Considering Status of Preceding Vehicles at Intersections[J]. Journal of Southwest Jiaotong University, 2022, 57(2): 410-417, 433. doi: 10.3969/j.issn.0258-2724.20200553
    [5]JIANG Yangsheng, GU Qiufan, YAO Zhihong. Review of Stability Analysis Method for Mixed Traffic Flow with Connected Automated Vehicles[J]. Journal of Southwest Jiaotong University, 2022, 57(5): 927-940. doi: 10.3969/j.issn.0258-2724.20210560
    [6]WU Dehua, PENG Rui, LIN Xiling. Hybrid Characteristics of Heterogeneous Traffic Flow in Intelligent Network[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 761-768. doi: 10.3969/j.issn.0258-2724.20210276
    [7]GAN Jiahua, MAO Xinhua, ZHAO Jing. Optimal Evacuation Model of Parking Vehicles in Dynamic Traffic Flows[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 123-130. doi: 10.3969/j.issn.0258-2724.20190611
    [8]CUI Hongtao, CAO Ke, ZHANG Hu, CUI Xiao. Weather Classification in Traffic Scene Based on Joint Voting Network[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 579-586. doi: 10.3969/j.issn.0258-2724.20200084
    [9]PENG Bo, TANG Ju, ZHANG Yuanyuan, CAI Xiaoyu, MENG Fanhe. Automatic Traffic State Recognition from Road Videos Based on 3D Convolution Neural Network[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 153-159. doi: 10.3969/j.issn.0258-2724.20191169
    [10]WANG Chao, ZHU Ming, ZHAO Yuandi. Air Traffic Flow Prediction Model Based on Improved Adding-Weighted One-Rank Local-rejion Method[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 206-213. doi: 10.3969/j.issn.0258-2724.2018.01.025
    [11]LUO Wenhui, DONG Baotian, WANG Zesheng. Algorithm Based on Cooperative Vehicle Infrastructure Systems[J]. Journal of Southwest Jiaotong University, 2018, 53(5): 1072-1077, 1086. doi: 10.3969/j.issn.0258-2724.2018.05.026
    [12]LIU Lan, LUO Chen, YIN Junsong, MA Yafeng. Route Decision Model under the Environment of Multi-source Information[J]. Journal of Southwest Jiaotong University, 2015, 28(5): 891-897. doi: 10.3969/j.issn.0258-2724.2015.05.019
    [13]PAN Weijun, YANG Kai. Influence of Vehicle Length and Velocity on Mixed Traffic Flow in Two-Lane Traffic Flow[J]. Journal of Southwest Jiaotong University, 2013, 26(2): 335-342. doi: 10.3969/j.issn.0258-2724.2013.02.023
    [14]WANG Lili, ZHANG Xinyu, ZHANG Zhaoning. Following Phenomenon and Air Freeway Flow Model[J]. Journal of Southwest Jiaotong University, 2012, 25(1): 158-162. doi: 10.3969/j.issn.0258-2724.2012.021.01.026
    [15]ZHANG Chen, HU Ming-Hua, ZHANG Jin. Trajectory Planning Model of 2-Directional Air Traffic Flows Based on Improved Clearance Strategy[J]. Journal of Southwest Jiaotong University, 2010, 23(5): 817-823. doi: 10. 3969/ j. issn. 0258-2724.
    [16]WANG Xin, WANG Wei, LI Wenquan, CHENG Lin. Interpretation of Traffic Flow Breakdown with Density-Flow Model[J]. Journal of Southwest Jiaotong University, 2009, 22(1): 141-146.
    [17]ZHANG Ming, HAN Songchen, HUANG Linyuan. Air Traffic Flow Combinational Forecast Based on Double Gravity Model and Artificial Neural Network[J]. Journal of Southwest Jiaotong University, 2009, 22(5): 764-770.
    [18]LONGXiao-qiang, YANQi-peng. Traffic Flow Model under the Control of Traffic Lamp[J]. Journal of Southwest Jiaotong University, 2000, 13(3): 301-305.
    [19]LUOXia, DUJin-you, CHEN Ying-wen. Analyses on Multi-Traffic Flow s Characteristics[J]. Journal of Southwest Jiaotong University, 2000, 13(3): 297-300.
  • Cited by

    Periodical cited type(8)

    1. 耿志军,程陆,李阳,柏海舰,汪雪松. 基于轨迹重构数据的不同反应时间跟驰模型. 兰州工业学院学报. 2024(02): 29-34 .
    2. 丁然. 考虑汽车跟驰作用的智能网联汽车通信时延控制方法. 常州工学院学报. 2024(04): 32-37 .
    3. 杨涛,马玉琴,刘梦,姚志洪,蒋阳升. 智能网联环境下信号交叉口车辆轨迹重构模型. 西南交通大学学报. 2024(05): 1148-1157 . 本站查看
    4. 张丽岩,杨君玉,马健,顾海荣,崔玉玉. 基于不同渗透率下的自适应与协同自适应巡航的仿真研究. 物流科技. 2024(23): 84-88 .
    5. 房山,杨澜,赵祥模,王威,魏诚,吴国垣. 智能网联车辆低渗透率下交叉口排队长度估计策略. 中国公路学报. 2024(11): 249-261 .
    6. 蒋阳升,刘梦,王思琛,姚志洪,唐优华. 基于网联车轨迹重构的交通油耗和排放估计方法. 安全与环境学报. 2022(04): 2147-2155 .
    7. 季必莹,李嘉伟. 考虑驾驶内部异质性的微观车辆轨迹重构研究. 综合运输. 2022(10): 103-107 .
    8. 姚志洪,郝慧君,巫雪梅,赵斌,蒋阳升. 考虑自动驾驶的混合交通流路段阻抗函数. 交通运输工程与信息学报. 2021(04): 1-12 .

    Other cited types(17)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-062025-070255075100
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 31.9 %FULLTEXT: 31.9 %META: 64.1 %META: 64.1 %PDF: 4.0 %PDF: 4.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 9.0 %其他: 9.0 %其他: 0.1 %其他: 0.1 %China: 0.9 %China: 0.9 %San Lorenzo: 0.1 %San Lorenzo: 0.1 %Seattle: 0.3 %Seattle: 0.3 %United States: 0.4 %United States: 0.4 %[]: 0.1 %[]: 0.1 %上海: 3.2 %上海: 3.2 %东莞: 0.6 %东莞: 0.6 %临汾: 0.1 %临汾: 0.1 %临沂: 0.1 %临沂: 0.1 %九龙: 0.1 %九龙: 0.1 %保定: 0.1 %保定: 0.1 %兰州: 0.1 %兰州: 0.1 %内江: 0.1 %内江: 0.1 %北京: 3.0 %北京: 3.0 %十堰: 0.5 %十堰: 0.5 %南京: 1.9 %南京: 1.9 %南昌: 0.3 %南昌: 0.3 %南通: 0.5 %南通: 0.5 %台州: 0.1 %台州: 0.1 %合肥: 0.4 %合肥: 0.4 %哈尔滨: 0.1 %哈尔滨: 0.1 %唐山: 0.1 %唐山: 0.1 %嘉兴: 0.6 %嘉兴: 0.6 %大同: 0.1 %大同: 0.1 %大连: 0.4 %大连: 0.4 %天津: 2.8 %天津: 2.8 %太原: 0.1 %太原: 0.1 %宁波: 0.2 %宁波: 0.2 %安康: 0.1 %安康: 0.1 %宣城: 1.1 %宣城: 1.1 %密苏里州: 0.1 %密苏里州: 0.1 %山景城: 0.1 %山景城: 0.1 %常州: 0.2 %常州: 0.2 %广州: 0.4 %广州: 0.4 %张家口: 2.4 %张家口: 2.4 %悉尼: 0.3 %悉尼: 0.3 %成都: 3.6 %成都: 3.6 %扬州: 2.3 %扬州: 2.3 %新乡: 0.1 %新乡: 0.1 %无锡: 0.1 %无锡: 0.1 %昆明: 0.5 %昆明: 0.5 %杭州: 1.5 %杭州: 1.5 %枣庄: 0.2 %枣庄: 0.2 %格兰特县: 0.1 %格兰特县: 0.1 %桂林: 0.3 %桂林: 0.3 %武汉: 0.5 %武汉: 0.5 %沈阳: 0.8 %沈阳: 0.8 %法兰克福: 0.1 %法兰克福: 0.1 %洛杉矶: 0.1 %洛杉矶: 0.1 %洛阳: 0.5 %洛阳: 0.5 %济南: 0.1 %济南: 0.1 %济宁: 0.1 %济宁: 0.1 %淄博: 0.2 %淄博: 0.2 %深圳: 0.1 %深圳: 0.1 %温州: 1.0 %温州: 1.0 %湖州: 0.2 %湖州: 0.2 %滨州: 0.1 %滨州: 0.1 %漯河: 7.4 %漯河: 7.4 %烟台: 0.1 %烟台: 0.1 %石家庄: 2.2 %石家庄: 2.2 %福州: 0.3 %福州: 0.3 %秦皇岛: 0.1 %秦皇岛: 0.1 %绍兴: 0.1 %绍兴: 0.1 %芒廷维尤: 14.1 %芒廷维尤: 14.1 %芝加哥: 1.1 %芝加哥: 1.1 %苏州: 0.1 %苏州: 0.1 %衡阳: 0.2 %衡阳: 0.2 %衢州: 0.1 %衢州: 0.1 %襄阳: 0.1 %襄阳: 0.1 %西宁: 19.8 %西宁: 19.8 %西安: 1.3 %西安: 1.3 %诺沃克: 0.7 %诺沃克: 0.7 %运城: 0.5 %运城: 0.5 %邢台: 0.1 %邢台: 0.1 %邯郸: 0.6 %邯郸: 0.6 %郑州: 0.8 %郑州: 0.8 %重庆: 1.0 %重庆: 1.0 %镇江: 0.1 %镇江: 0.1 %长春: 0.1 %长春: 0.1 %长沙: 4.7 %长沙: 4.7 %青岛: 1.1 %青岛: 1.1 %其他其他ChinaSan LorenzoSeattleUnited States[]上海东莞临汾临沂九龙保定兰州内江北京十堰南京南昌南通台州合肥哈尔滨唐山嘉兴大同大连天津太原宁波安康宣城密苏里州山景城常州广州张家口悉尼成都扬州新乡无锡昆明杭州枣庄格兰特县桂林武汉沈阳法兰克福洛杉矶洛阳济南济宁淄博深圳温州湖州滨州漯河烟台石家庄福州秦皇岛绍兴芒廷维尤芝加哥苏州衡阳衢州襄阳西宁西安诺沃克运城邢台邯郸郑州重庆镇江长春长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(5)

    Article views(1021) PDF downloads(57) Cited by(25)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return