• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 31 Issue 1
Jan.  2018
Turn off MathJax
Article Contents
WANG Chao, ZHU Ming, ZHAO Yuandi. Air Traffic Flow Prediction Model Based on Improved Adding-Weighted One-Rank Local-rejion Method[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 206-213. doi: 10.3969/j.issn.0258-2724.2018.01.025
Citation: WANG Chao, ZHU Ming, ZHAO Yuandi. Air Traffic Flow Prediction Model Based on Improved Adding-Weighted One-Rank Local-rejion Method[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 206-213. doi: 10.3969/j.issn.0258-2724.2018.01.025

Air Traffic Flow Prediction Model Based on Improved Adding-Weighted One-Rank Local-rejion Method

doi: 10.3969/j.issn.0258-2724.2018.01.025
  • Received Date: 25 Oct 2016
  • Publish Date: 25 Feb 2018
  • Accurate air traffic flow prediction is an important basis for efficient air traffic control and management. Aiming at the inherent chaotic dynamic characteristics of air traffic flow time series, the chaotic traffic-flow time-series prediction model based on improved adding-weight one-rank local-region prediction method was analyzed herein. Firstly, an improved adding-weight one-rank local-region prediction method was proposed, which involved weighing the evolution of adjacent phase points. Further, the prediction results were corrected by construction of error sequences during the prediction process. Secondly, the chaotic characteristics were verified to exist in four groups of air traffic flow time series at different time scales, using the saturation phenomenon of correlation dimension. Finally, a validation experiment for air traffic flow prediction was carried out using the improved method, after phase space reconstruction of air traffic flow time series. The results show that the prediction accuracy of all four groups is improved, wherein the traffic flow time series with time scale of 10 min has the best precision; the relative error in this case reduces by 29.7%.

     

  • loading
  • 耿睿, 崔德光, 徐冰.应用支持向量机的空中交通流量组合预测模型[J].清华大学学报:自然科学版, 2008, 48(7):1205-1208. http://d.old.wanfangdata.com.cn/Periodical/qhdxxb200807036

    GENG Rui, CUI Deguang, XU Bing. Support vector machine-based combinational model for air traffic forecasts[J]. Journal of Tsinghua University, 2008, 48(7):1205-1208. http://d.old.wanfangdata.com.cn/Periodical/qhdxxb200807036
    张明, 韩松臣, 黄林源.基于双重力模型和人工神经网络的空中交通流量组合预测[J].西南交通大学学报, 2009, 44(5):764-770. doi: 10.3969/j.issn.0258-2724.2009.05.025

    ZHANG Ming, HAN Songchen, HUANG Linyuan. Air traffic flow combinational forecast based on double gravity model and artificial neural network[J]. Journal of Southwest Jiaotong University, 2009, 44(5):764-770. doi: 10.3969/j.issn.0258-2724.2009.05.025
    王超, 郭九霞, 沈志鹏.基于基本飞行模型的4D航迹预测方法[J].西南交通大学学报, 2009, 44(2):295-300. doi: 10.3969/j.issn.0258-2724.2009.02.028

    WANG Chao, GUO Jiuxia, SHEN Zhipeng. Prediction of 4D trajectory based on basic flight models[J]. Journal of Southwest Jiaotong University, 2009, 44(2):295-300. doi: 10.3969/j.issn.0258-2724.2009.02.028
    吕金虎, 张锁春.加权一阶局域法在电力系统短期负荷预测中的应用[J].控制理论与应用, 2002, 19(5):767-770. http://d.old.wanfangdata.com.cn/Periodical/kzllyyy200205022

    LÜ Jinhu, ZHANG Suochun. Application of adding-weight one-rank local-region method in electric power system short-term load forecast[J]. Control Theory & Applications, 2002, 19(5):767-770. http://d.old.wanfangdata.com.cn/Periodical/kzllyyy200205022
    金玉婷.基于混沌和小波神经网络的短时交通流量预测方法研究[D].成都: 西南交通大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10613-1014251940.htm
    陈丹, 胡明华, 张洪海, 等.考虑周期性波动因素的中长期空中交通流量预测[J].西南交通大学学报, 2015, 50(3):562-568. doi: 10.3969/j.issn.0258-2724.2015.03.028

    CHEN Dan, HU Minghua, ZHANG Honghai, et al. Forecast method for medium-long term air traffic flow considering periodic fluctuation factors[J]. Journal of Southwest Jiaotong University, 2015, 50(3):562-568. doi: 10.3969/j.issn.0258-2724.2015.03.028
    张洪海, 杨磊, 别翌荟, 等.终端区进场交通流广义跟驰行为与复杂相变分析[J].航空学报, 2015, 36(3):949-961. http://d.old.wanfangdata.com.cn/Periodical/hkxb201503028

    ZHANG Honghai, YANG Lei, BIE Yi Hui, et al. Analysis on generalized following behavior and complex phase-transition law of approaching traffic flow in terminal airspace[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3):949-961. http://d.old.wanfangdata.com.cn/Periodical/hkxb201503028
    PACKARD N H, CRUTCHFIELD J P, FARMER J D. Geometry from a time series[J]. Physics Review Letters, 1980, 45(9):712. doi: 10.1103/PhysRevLett.45.712
    吕金虎, 陆君安, 陈士华.混沌时间序列分析及应用[M].武汉:武汉大学出版社, 2002:102-105.
    CONG W, HU M H. Chaotic characteristic analysis of air traffic system[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2014, 31(6):636-642. http://www.cqvip.com/QK/85388X/201406/663464141.html
    LI S M, XU X H, MENG L H. Flight conflict forecasting based on chaotic time series[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2012, 29(4):388-394. http://en.cnki.com.cn/Article_en/CJFDTOTAL-NJHY201204014.htm
    王超, 郑旭芳, 王蕾.交汇航路空中交通流的非线性特征研究[J].西南交通大学学报, 2017, 52(1):171-178. doi: 10.3969/j.issn.0258-2724.2017.01.024

    WANG Chao, ZHENG Xufang, WANG Lei. Research on nonlinear characteristics of air traffic flows on converging air routes[J]. Journal of Southwest Jiaotong University, 2017, 52(1):171-178. doi: 10.3969/j.issn.0258-2724.2017.01.024
    STROGATZ S H. Nonlinear dynamics and chaos:with applications to physics, biology, chemistry, and engineering[M]. Boulder:Westview Press, 2014:317-335.
    XUE J, SHI Z. Short-time traffic flow prediction based on chaos time series theory[J]. Journal of Transportation Systems Engineering & Information Technology, 2008, 8(5):68-72. http://www.sciencedirect.com/science/article/pii/S1570667208600409
    LAN L W, SHEU J B, HUANG Y S. Investigation of temporal freeway traffic patterns in reconstructed state spaces[J]. Transportation Research Part C Emerging Technologies, 2008, 16(1):116-136. doi: 10.1016/j.trc.2007.06.006
    TAKENS F. On the numerical determination of the dimension of an attractor[M]. Berlin:Springer, 1985:99-106.
    MAÑÉ R. On the dimension of the compact invariant sets of certain non-linear maps[M]. Berlin:Springer, 1981:230-242.
    贺国光, 马寿峰, 冯蔚东.对交通流分形问题的初步研究[J].中国公路学报, 2002, 15(4):82-85. doi: 10.3321/j.issn:1001-7372.2002.04.022

    HE Guoguang, MA Shoufeng, FENF Weidong. Preliminary study of fractals of traffic flow[J]. China Journal of Highway & Transport, 2002, 15(4):82-85. doi: 10.3321/j.issn:1001-7372.2002.04.022
    马庆禄.基于混沌理论的交通状态预测研究[D].重庆: 重庆大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10611-1012047358.htm
    KANTZ H, SCHREIBER T. Nonlinear time series analysis[M]. Cambridge:Cambridge University Press, 2004:69-72.
    GRASSBERGER P, PROCACCIA I. Measuring the strangeness of strange attractors[J]. Physica D Nonlinear Phenomena, 1983, 9(1):189-208. http://www.sciencedirect.com/science/article/pii/0167278983902981
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article views(494) PDF downloads(100) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return