Citation: | YAO Yuan, CHEN Xiangwang, LI Guang, ZHANG Zhenxian. Multi-objective Optimization of Yaw Damper Parameters for High-Speed Train[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1298-1304. doi: 10.3969/j.issn.0258-2724.20200016 |
In order to study the parameter matching law of yaw damper for the lateral stability of high-speed trains under different wheel-rail contact conditions, a simplified model of vehicle lateral dynamics was established aiming at the typical parameters of high-speed trains operating in China. Considering the lateral stability of vehicles under the high or low wheel-rail contact conicity states respectively, the multi-objective optimization method was used to optimize the stiffness and damping parameters of yaw damper, and the influencing factors of the optimal parameters of yaw damper were analyzed as well. The results show that the optimal damping value of yaw damper mainly depends on the lateral damping of the secondary suspension, and two types of damping value selection for yaw damper are obtained. That is, when the secondary lateral damping is small, a small damping value of 600−1 000 kN•s•m−1 in one side of bogie should be selected. On the contrary, the yaw damper greater than 4 000 kN•s•m−1 should match the vehicle adopting a large secondary lateral damping. The stiffness of yaw damper significantly affects the stability of vehicles in different wheel-rail contact states. A smaller stiffness is conductive to the lateral stability of vehicles in low conicity wheel-rail contact state, and vice versa.
[1] |
曾京,邬平波. 减振器橡胶节点刚度对铁道客车系统临界速度的影响[J]. 中国铁道科学,2008,29(2): 94-98. doi: 10.3321/j.issn:1001-4632.2008.02.018
ZENG Jing, WU Pingbo. Influence of the damper rubber joint stiffness on the critical speed of railway passenger car system[J]. China Railway Science, 2008, 29(2): 94-98. doi: 10.3321/j.issn:1001-4632.2008.02.018
|
[2] |
张卫华,李艳,宋冬利. 高速列车运动稳定性设计方法研究[J]. 西南交通大学学报,2013,48(1): 1-9. doi: 10.3321/j.issn:1671-1637.2006.04.002
ZHANG Weihua, LI Yan, SONG Dongli. Design methods for motion stability of high-speed trains[J]. Journal of Southwest Jiaotong University, 2013, 48(1): 1-9. doi: 10.3321/j.issn:1671-1637.2006.04.002
|
[3] |
孙建锋,池茂儒,吴兴文,等. 抗蛇行减振器参数对车辆稳定性的影响分析[J]. 振动、测试与诊断,2018,38(6): 1155-1160.
SUN Jianfeng, CHI Maoru, WU Xingwen, et al. Analysis of the influence of the yaw damper parameters on the vehicle stability[J]. Journal of Vibration,Measurement & Diagnosis, 2018, 38(6): 1155-1160.
|
[4] |
于曰伟,周长城,赵雷雷. 高速客车抗蛇行减振器阻尼匹配的解析研究[J]. 机械工程学报,2018,54(2): 159-168. doi: 10.3901/JME.2018.02.159
YU Yuewei, ZHOU Changcheng, ZHAO Leilei. Analytical research of yaw damper damping matching for high-speed train[J]. Journal of Mechanical Engineering, 2018, 54(2): 159-168. doi: 10.3901/JME.2018.02.159
|
[5] |
BRAGHIN F, BRUNI S, RESTA F. Active yaw damper for the improvement of railway vehicle stability and curving performances:simulations and experimental results[J]. Vehicle System Dynamics, 2006, 44(11): 857-869. doi: 10.1080/00423110600733972
|
[6] |
HE Y P, MCPHEE J. Multidisciplinary optimization of multibody systems with application to the design of rail vehicles[J]. Multibody System Dynamics, 2005, 14(2): 111-135. doi: 10.1007/s11044-005-4310-0
|
[7] |
李奇,孟翔,陈维荣,等. 燃料电池混合动力系统参数匹配与多目标优化[J]. 西南交通大学学报,2019,54(5): 1079-1086.
LI Qi, MENG Xiang, CHEN Weirong, et al. Parameter matching and multi-objective optimization of fuel cell hybrid system[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 1079-1086.
|
[8] |
解欢,杨岳,童林军,等. 基于混合代理模型的高速轨道车辆悬挂参数多目标优化[J]. 铁道科学与工程学报,2016,13(10): 2056-2063. doi: 10.3969/j.issn.1672-7029.2016.10.025
XIE Huan, YANG Yue, TONG Linjun, et al. Multi-objective optimization of the suspension parameters for high speed rail vehicle based on a hybrid surrogate model[J]. Journal of Railway Science and Engineering, 2016, 13(10): 2056-2063. doi: 10.3969/j.issn.1672-7029.2016.10.025
|
[9] |
JOHNSSON A, BERBYUK V, ENELUND M. Pareto optimisation of railway bogie suspension damping to enhance safety and comfort[J]. Vehicle System Dynamics, 2012, 50(9): 1379-1407. doi: 10.1080/00423114.2012.659846
|
[10] |
BIDELEH S M, BERBYUK V, PERSSON R. Wear/comfort pareto optimisation of bogie suspension[J]. Vehicle System Dynamics, 2016, 54(8): 1053-1076. doi: 10.1080/00423114.2016.1180405
|
[11] |
ALONSO A, GIMÉNEZ J G, GOMEZ E. Yaw damper modelling and its influence on the railway dynamic stability[J]. Vehicle System Dynamics, 2011, 49(8): 1367-1387.
|
[12] |
YAO Y, YAN Y P, HU Z K, et al. The motor active flexible suspension and its dynamic effect on the high-speed train bogie[J]. Journal of Dynamic Systems,Measurement and Control, 2017, 140(6): 064501.1-064501.7.
|
[13] |
YAO Y, ZHANG XX, LIU X. The active control of the lateral movement of a motor suspended under a high-speed locomotive[J]. Rail and Rapid Transit, 2016, 230(6): 1509-1520. doi: 10.1177/0954409715605138
|
[14] |
YAO Y, LI G, WU G S, et al. Suspension parameters optimum of high-speed train bogie for hunting stability robustness[J]. International Journal of Rail Transportation, 2020, 8(3): 195-214. doi: 10.1080/23248378.2019.1625824
|
[15] |
AGRAWAL R B, DEB K, AGRAWAL R B. Simulated binary crossover for continuous search space[J]. Complex Systems, 2000, 9(3): 115-148.
|
[16] |
董浩. 铁道车辆运动稳定性及分岔类型研究[D]. 成都: 西南交通大学, 2014.
|
[1] | JIANG Jie, DING Guofu, ZOU Yisheng, ZHANG Haizhu, HUANG Haiyu, LI Rong, ZHANG Jian. Iterative Optimization Design for Dynamic Performance Parameters of High-Speed Trains[J]. Journal of Southwest Jiaotong University, 2025, 60(3): 679-687, 697. doi: 10.3969/j.issn.0258-2724.20220071 |
[2] | DAI Zhiyuan, LI Tian, ZHANG Weihua, ZHANG Jiye. Multi-objective Aerodynamic Optimization on Head Shape of High-Speed Train Using Kriging Surrogate Model with Hybrid Infill Criterion[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 46-53. doi: 10.3969/j.issn.0258-2724.20220218 |
[3] | NI Shaoquan, LUO Xuan, XIAO Bin. Optimization of Vehicle–Cargo Matching Regarding Interests of Three Parties[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 48-57. doi: 10.3969/j.issn.0258-2724.20210859 |
[4] | HU Yongpan, ZENG Jiewei, WANG Zhiqiang, LONG Zhiqiang. Performance Optimization of Ultra-High Speed Permanent Magnet Electrodynamic Suspension System[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 773-782. doi: 10.3969/j.issn.0258-2724.20220856 |
[5] | CHEN Yu, LIU Yiming, MAO Mao, LI Qiliang, WANG Yigang, YANG Zhigang. Influence of Underbody Parameters of High-Speed Trains on Aerodynamic Noise[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1171-1179. doi: 10.3969/j.issn.0258-2724.20220148 |
[6] | ZHANG Weiyu, LI Kai, YANG Xin. Multi-Objective Optimization for Flywheel Motors Based on Parameter Priority Division[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 922-932. doi: 10.3969/j.issn.0258-2724.20220845 |
[7] | YAO Yuan, REN Chengming, CHEN Xiangwang, LIU Xiaoxue. Suspension Parameters Optimum Matching of High-Speed Locomotive Based on Frequency Domain Stationarity[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1259-1267. doi: 10.3969/j.issn.0258-2724.20200753 |
[8] | FU Wenchao, QI Hongfeng, DAI Chaohua, LI Mi, LIU Zhengjie, CHEN Weirong. Multi-objective Matching Optimization for Hybrid Fuel-Cell Power System in Trams[J]. Journal of Southwest Jiaotong University, 2020, 55(3): 604-611. doi: 10.3969/j.issn.0258-2724.20180370 |
[9] | DAI Chaohua, LIU Yang, HUANG Chenxi, ZHAO Duo, GUO Ai, CHEN Weirong, LIU Nan. Parameters Optimization for Hybrid Energy Storage System of Electric Vehicles Based on Cross-Entropy Algorithm[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 839-846. doi: 10.3969/j.issn.0258-2724.20190442 |
[10] | LI Qi, MENG Xiang, CHEN Weirong, ZHANG Guorui. Parameter Matching and Multi-objective Optimization of Fuel Cell Hybrid System[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 1079-1086. doi: 10.3969/j.issn.0258-2724.20170117 |
[11] | ZHANG Fei, ZHANG Jin. Logistics Service Composition Based on Multi-Objective Optimization[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1278-1285, 1307. doi: 10.3969/j.issn.0258-2724.2018.06.025 |
[12] | ZHANG Liang, ZHANG Jiye, LI Tian, ZHANG Weihua. Multi-objective Aerodynamic Optimization Design for Head Shape of High-Speed Trains[J]. Journal of Southwest Jiaotong University, 2016, 29(6): 1055-1063. doi: 10.3969/j.issn.0258-2724.2016.06.003 |
[13] | YANG Mingliang, LI Renxian, DING Weiping, ZHANG Song, DING Wei. Influence of Valves Parameters on Damping Characteristics of Hydraulic Shock Absorber for High-Speed Trains[J]. Journal of Southwest Jiaotong University, 2014, 27(2): 291-296. doi: 10.3969/j.issn.0258-2724.2014.02.016 |
[14] | HUANG Guanhua, ZHANG Weihua, FU Yongpei, LIANG Shulin, WANG Xingyu. Stability Analysis of Parametric Vibration for Gear Transmission System in High-Speed Train[J]. Journal of Southwest Jiaotong University, 2014, 27(6): 1010-1015. doi: 10.3969/j.issn.0258-2724.2014.06.012 |
[15] | ZHANG Weihua, LI Yan, SONG Dongli. Design Methods for Motion Stability of High-Speed Trains[J]. Journal of Southwest Jiaotong University, 2013, 26(1): 1-9. doi: 10.3969/j.issn.0258-2724.2013.01.001 |
[16] | HUANG Jian, PENG Qiyuan. Two-Stage Optimization Algorithm for Stop Schedule Plan of High-Speed Train[J]. Journal of Southwest Jiaotong University, 2012, 25(3): 484-489. doi: 10.3969/j.issn.0258-2724.2012.03.021 |
[17] | TAO Yuan, ZHANG Gong-Jun, LUO Bin, JIN Ding-Chang. Lateral Stability of Single Wheelset under Traction[J]. Journal of Southwest Jiaotong University, 2011, 24(5): 826-830. doi: 10.3969/j.issn.0258-2724.2011.05.019 |
[18] | CHEN Xiang, XU Bochu, ZHANG Weihua. Optimization of Seat Comfort of High-Speed Train[J]. Journal of Southwest Jiaotong University, 2009, 22(6): 906-911. |
[19] | Cao Dengqing. Lateral Stability Analysis for Rail Vehicle Dynamic Models with Uncertain Parameters[J]. Journal of Southwest Jiaotong University, 1999, 12(3): 253-258. |
1. | 金田甜,代亮成,向安波,马琳娜,侯政安,曾鹏程. 高速动车组抗蛇行减振器串联刚度匹配分析. 铁道机车车辆. 2025(02): 30-37 . ![]() | |
2. | 田光荣. 基于多目标决策方法的动车组车轮镟修策略研究. 铁道机车车辆. 2024(03): 132-138 . ![]() | |
3. | 沈龙江,李广,邓小星,姚远. 动力集中动车组动力车前后横向平稳性差异研究. 铁道学报. 2024(07): 23-29 . ![]() | |
4. | 孙睿,胡志柯,黄志辉. 铁道车辆主动直接反馈与全状态反馈控制方法设计优化与仿真. 现代制造工程. 2024(08): 87-94 . ![]() | |
5. | 周岩,李广,张祥光,程俊,姚远,魏灵. 频变阻尼减振器对机车横向动力学性能的影响研究. 铁道机车车辆. 2024(05): 19-26 . ![]() | |
6. | 胡喆,池茂儒,周亚波,蔡吴斌. 转向架质量参数与悬挂参数对稳定性的协同影响. 机械科学与技术. 2024(11): 1835-1844 . ![]() | |
7. | 李广,姚远,陈相旺,沈龙江. 基于全因子DOE的机车抗蛇行减振器布置方式及参数优化. 中南大学学报(自然科学版). 2023(05): 2074-2084 . ![]() | |
8. | 祁亚运,戴焕云,桑虎堂,王瑞安. 高速动车组抗蛇行减振器参数优化研究. 振动工程学报. 2023(05): 1326-1334 . ![]() | |
9. | 张海,冉祥瑞,李海涛,林凤涛,王秀刚. 面向车辆平稳性的抗蛇行减振器结构参数多目标优化. 噪声与振动控制. 2022(02): 219-225 . ![]() | |
10. | 姚远,任铖铭,陈相旺,刘晓雪. 基于频域平稳性的高速机车悬挂参数优化匹配. 西南交通大学学报. 2022(06): 1259-1267 . ![]() | |
11. | 姚远,程俊,张名扬,沈龙江. 高速列车抗蛇行减振器作用机制与频变刚度应用研究. 振动工程学报. 2022(06): 1461-1470 . ![]() | |
12. | 姚远,许振飞,宋亚东,沈龙江,李传龙. 基于涡激振动的动车组隧道内列尾横向晃动机理. 交通运输工程学报. 2021(05): 114-124 . ![]() |