• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 56 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
YAO Yuan, CHEN Xiangwang, LI Guang, ZHANG Zhenxian. Multi-objective Optimization of Yaw Damper Parameters for High-Speed Train[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1298-1304. doi: 10.3969/j.issn.0258-2724.20200016
Citation: YAO Yuan, CHEN Xiangwang, LI Guang, ZHANG Zhenxian. Multi-objective Optimization of Yaw Damper Parameters for High-Speed Train[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1298-1304. doi: 10.3969/j.issn.0258-2724.20200016

Multi-objective Optimization of Yaw Damper Parameters for High-Speed Train

doi: 10.3969/j.issn.0258-2724.20200016
  • Received Date: 11 Feb 2020
  • Rev Recd Date: 29 May 2020
  • Available Online: 07 Jul 2020
  • Publish Date: 07 Jul 2020
  • In order to study the parameter matching law of yaw damper for the lateral stability of high-speed trains under different wheel-rail contact conditions, a simplified model of vehicle lateral dynamics was established aiming at the typical parameters of high-speed trains operating in China. Considering the lateral stability of vehicles under the high or low wheel-rail contact conicity states respectively, the multi-objective optimization method was used to optimize the stiffness and damping parameters of yaw damper, and the influencing factors of the optimal parameters of yaw damper were analyzed as well. The results show that the optimal damping value of yaw damper mainly depends on the lateral damping of the secondary suspension, and two types of damping value selection for yaw damper are obtained. That is, when the secondary lateral damping is small, a small damping value of 600−1 000 kN•s•m−1 in one side of bogie should be selected. On the contrary, the yaw damper greater than 4 000 kN•s•m−1 should match the vehicle adopting a large secondary lateral damping. The stiffness of yaw damper significantly affects the stability of vehicles in different wheel-rail contact states. A smaller stiffness is conductive to the lateral stability of vehicles in low conicity wheel-rail contact state, and vice versa.

     

  • loading
  • [1]
    曾京,邬平波. 减振器橡胶节点刚度对铁道客车系统临界速度的影响[J]. 中国铁道科学,2008,29(2): 94-98. doi: 10.3321/j.issn:1001-4632.2008.02.018

    ZENG Jing, WU Pingbo. Influence of the damper rubber joint stiffness on the critical speed of railway passenger car system[J]. China Railway Science, 2008, 29(2): 94-98. doi: 10.3321/j.issn:1001-4632.2008.02.018
    [2]
    张卫华,李艳,宋冬利. 高速列车运动稳定性设计方法研究[J]. 西南交通大学学报,2013,48(1): 1-9. doi: 10.3321/j.issn:1671-1637.2006.04.002

    ZHANG Weihua, LI Yan, SONG Dongli. Design methods for motion stability of high-speed trains[J]. Journal of Southwest Jiaotong University, 2013, 48(1): 1-9. doi: 10.3321/j.issn:1671-1637.2006.04.002
    [3]
    孙建锋,池茂儒,吴兴文,等. 抗蛇行减振器参数对车辆稳定性的影响分析[J]. 振动、测试与诊断,2018,38(6): 1155-1160.

    SUN Jianfeng, CHI Maoru, WU Xingwen, et al. Analysis of the influence of the yaw damper parameters on the vehicle stability[J]. Journal of Vibration,Measurement & Diagnosis, 2018, 38(6): 1155-1160.
    [4]
    于曰伟,周长城,赵雷雷. 高速客车抗蛇行减振器阻尼匹配的解析研究[J]. 机械工程学报,2018,54(2): 159-168. doi: 10.3901/JME.2018.02.159

    YU Yuewei, ZHOU Changcheng, ZHAO Leilei. Analytical research of yaw damper damping matching for high-speed train[J]. Journal of Mechanical Engineering, 2018, 54(2): 159-168. doi: 10.3901/JME.2018.02.159
    [5]
    BRAGHIN F, BRUNI S, RESTA F. Active yaw damper for the improvement of railway vehicle stability and curving performances:simulations and experimental results[J]. Vehicle System Dynamics, 2006, 44(11): 857-869. doi: 10.1080/00423110600733972
    [6]
    HE Y P, MCPHEE J. Multidisciplinary optimization of multibody systems with application to the design of rail vehicles[J]. Multibody System Dynamics, 2005, 14(2): 111-135. doi: 10.1007/s11044-005-4310-0
    [7]
    李奇,孟翔,陈维荣,等. 燃料电池混合动力系统参数匹配与多目标优化[J]. 西南交通大学学报,2019,54(5): 1079-1086.

    LI Qi, MENG Xiang, CHEN Weirong, et al. Parameter matching and multi-objective optimization of fuel cell hybrid system[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 1079-1086.
    [8]
    解欢,杨岳,童林军,等. 基于混合代理模型的高速轨道车辆悬挂参数多目标优化[J]. 铁道科学与工程学报,2016,13(10): 2056-2063. doi: 10.3969/j.issn.1672-7029.2016.10.025

    XIE Huan, YANG Yue, TONG Linjun, et al. Multi-objective optimization of the suspension parameters for high speed rail vehicle based on a hybrid surrogate model[J]. Journal of Railway Science and Engineering, 2016, 13(10): 2056-2063. doi: 10.3969/j.issn.1672-7029.2016.10.025
    [9]
    JOHNSSON A, BERBYUK V, ENELUND M. Pareto optimisation of railway bogie suspension damping to enhance safety and comfort[J]. Vehicle System Dynamics, 2012, 50(9): 1379-1407. doi: 10.1080/00423114.2012.659846
    [10]
    BIDELEH S M, BERBYUK V, PERSSON R. Wear/comfort pareto optimisation of bogie suspension[J]. Vehicle System Dynamics, 2016, 54(8): 1053-1076. doi: 10.1080/00423114.2016.1180405
    [11]
    ALONSO A, GIMÉNEZ J G, GOMEZ E. Yaw damper modelling and its influence on the railway dynamic stability[J]. Vehicle System Dynamics, 2011, 49(8): 1367-1387.
    [12]
    YAO Y, YAN Y P, HU Z K, et al. The motor active flexible suspension and its dynamic effect on the high-speed train bogie[J]. Journal of Dynamic Systems,Measurement and Control, 2017, 140(6): 064501.1-064501.7.
    [13]
    YAO Y, ZHANG XX, LIU X. The active control of the lateral movement of a motor suspended under a high-speed locomotive[J]. Rail and Rapid Transit, 2016, 230(6): 1509-1520. doi: 10.1177/0954409715605138
    [14]
    YAO Y, LI G, WU G S, et al. Suspension parameters optimum of high-speed train bogie for hunting stability robustness[J]. International Journal of Rail Transportation, 2020, 8(3): 195-214. doi: 10.1080/23248378.2019.1625824
    [15]
    AGRAWAL R B, DEB K, AGRAWAL R B. Simulated binary crossover for continuous search space[J]. Complex Systems, 2000, 9(3): 115-148.
    [16]
    董浩. 铁道车辆运动稳定性及分岔类型研究[D]. 成都: 西南交通大学, 2014.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article views(563) PDF downloads(64) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return