• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 55 Issue 4
Jul.  2020
Turn off MathJax
Article Contents
DAI Chaohua, LIU Yang, HUANG Chenxi, ZHAO Duo, GUO Ai, CHEN Weirong, LIU Nan. Parameters Optimization for Hybrid Energy Storage System of Electric Vehicles Based on Cross-Entropy Algorithm[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 839-846. doi: 10.3969/j.issn.0258-2724.20190442
Citation: DAI Chaohua, LIU Yang, HUANG Chenxi, ZHAO Duo, GUO Ai, CHEN Weirong, LIU Nan. Parameters Optimization for Hybrid Energy Storage System of Electric Vehicles Based on Cross-Entropy Algorithm[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 839-846. doi: 10.3969/j.issn.0258-2724.20190442

Parameters Optimization for Hybrid Energy Storage System of Electric Vehicles Based on Cross-Entropy Algorithm

doi: 10.3969/j.issn.0258-2724.20190442
  • Received Date: 17 May 2019
  • Rev Recd Date: 18 Oct 2019
  • Available Online: 21 Jan 2020
  • Publish Date: 01 Aug 2020
  • In order to improve the dynamic performance of electric vehicles and reduce costs, a parameter optimization method for vehicle-mounted hybrid power supply based on cross-entropy (CE) algorithm is explored with the intent of minimizing the hybrid power supply cost and power consumption. Firstly, a hybrid electric vehicle is used as the object, and the capacity ranges of its lithium-ion batteries and super-capacitors are determined according to the energy and power performance indexes. Secondly, the multi-objective optimization function of minimizing power supply cost and power consumption and the vehicle simulation model are established in ADVISOR. Subsequently, with CE algorithm, the mean and variance of the Gaussian probability density function are updated by the continuous iterations of populations to find out the optimal Pareto solution set. Finally, the typical solutions are selected to analyze the cost, power consumption and vehicle performance. The results show that under the basic requirements, 100 optimal solutions are found, which constitute an optimal Pareto solution set. Compared with the results of (non-dominated sorting genetic algorithm-Ⅱ) NSGA-Ⅱ, the convergence and distribution of CE algorithm are better, the cost of hybrid power supply is reduced by 9.49% and the vehicle power consumption by 22.81% on average. Furthermore, the maximum error of vehicle speed is reduced by 16.15% under UDDS cycle condition, and the vehicle dynamic performance is improved significantly with the acceleration time of 100 km reduced by 7.81% and the maximum speed increased by 1.98%.

     

  • loading
  • 马建,刘晓东,陈轶嵩,等. 中国新能源汽车产业与技术发展现状及对策[J]. 中国公路学报,2018,31(8): 1-19. doi: 10.3969/j.issn.1001-7372.2018.08.001

    MA Jian, LIU Xiaodong, CHEN Yisong, et al. Current status and countermeasures for China ’s new energy automobile industry and technology development[J]. China Journal of Highway and Transport, 2018, 31(8): 1-19. doi: 10.3969/j.issn.1001-7372.2018.08.001
    IANNUZZI D, CICCARELLI F, LAURIA D. Stationary ultracapacitors storage device for improving energy saving and voltage profile of light transportation networks[J]. Transportation Research Part C, 2011, 21(1): 321-337.
    AHMADI S, BATHAEE S M T. Multi-objective genetic optimization of the fuel cell hybrid vehicle supervisory system:fuzzy logic and operating mode control strategies[J]. International Journal of Hydrogen Energy, 2015, 40(36): 12512-12521. doi: 10.1016/j.ijhydene.2015.06.160
    GAO C, ZHAO J, WU J, et al. Optimal fuzzy logic based energy management strategy of battery/ supercapacitor hybrid energy storage system for electric vehicles[C]//Intelligent Control and Automation. [S.l.]: IEEE, 2016: 98-102.
    杨阳,崔维隆,苏岭,等. 一种新型混合动力传动系统匹配设计与性能仿真[J]. 中国公路学报,2014,27(9): 111-118. doi: 10.3969/j.issn.1001-7372.2014.09.015

    YANG Yang, CUI Weilong, SU Ling, et al. Matching design and performance simulation of a new hybrid powertrain[J]. China Journal of Highway and Transport, 2014, 27(9): 111-118. doi: 10.3969/j.issn.1001-7372.2014.09.015
    HU X, MURGOVSKI N, JOHANNESSON L M, et al. Comparison of three electrochemical energy buffers applied to a hybrid bus powertrain with simultaneous optimal sizing and energy management[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(3): 1193-1205. doi: 10.1109/TITS.2013.2294675
    胡建军,郑勇,胡志华,等. 纯电动汽车复合储能系统参数匹配及控制策略[J]. 中国公路学报,2018,31(3): 142-150. doi: 10.3969/j.issn.1001-7372.2018.03.016

    HU Jianjun, ZHNEG Yong, HU Zhihua, et al. Parameter matching and control strategy of hybrid energy storage system for pure electric vehicle[J]. China Journal of Highway and Transport, 2018, 31(3): 142-150. doi: 10.3969/j.issn.1001-7372.2018.03.016
    于远彬,王庆年,王加雪,等. 混合动力汽车车载复合电源参数匹配及其优化[J]. 吉林大学学报(工学版),2008,38(4): 764-768.

    YU Yuanbin, WANG Qingnian, WANG Jiaxue, et al. Parameter matching and optimization of hybrid vehicle power supply for hybrid electric vehicle[J]. Journal of Jilin University (Engineering Edition), 2008, 38(4): 764-768.
    王伟达,王言子,项昌乐,等. 混合动力车制动工况分析与储能装置参数匹配[J]. 哈尔滨工业大学学报,2014,46(9): 74-79. doi: 10.11918/hitxb20140913

    WANG Weida, WANG Yanzi, XIANG Changle, et al. Analysis of brake condition and parameter matching of hybrid energy storage system for hybrid electric vehicles[J]. Journal of Harbin Institute of Technology, 2014, 46(9): 74-79. doi: 10.11918/hitxb20140913
    朱曰莹,赵桂范,杨娜,等. 电动汽车动力系统参数匹配及优化[J]. 哈尔滨工业大学学报,2013,45(7): 90-95. doi: 10.11918/j.issn.0367-6234.2013.07.017

    ZHU Yueying, ZHAO Guifan, YANG Na, et al. Parameters match and optimization for the drive system of electric vehicle[J]. Journal of Harbin Institute of Technology, 2013, 45(7): 90-95. doi: 10.11918/j.issn.0367-6234.2013.07.017
    WANG Q, FRANK A A. Plug-in HEV with CVT:configuration,control,and its concurrent multi-objective optimization by evolutionary algorithm[J]. International Journal of Automotive Technology, 2014, 15(1): 103-115. doi: 10.1007/s12239-014-0012-z
    王庆年, 王光平, 王鹏宇, 等. 基于成本优化的插电式混合动力参数匹配[J]. 吉林大学学报(工学版), 2016(2): 340-347.

    WANG Qingnian, WANG Guangping, WANG Pengyu, et al. Parameter matching for plug-in hybrid electric vehicle based on cost optimization[J]. Journal of Jilin University (Engineering and Technology Edition), 2016(2): 340-347.
    WU X, CAO B, LI X, et al. Component sizing optimization of plug-in hybrid electric vehicles[J]. Applied Energy, 2011, 88(3): 799-804. doi: 10.1016/j.apenergy.2010.08.018
    邓涛,林椿松,李亚南,等. 采用NSGA-Ⅱ算法的混合动力能量管理控制多目标优化方法[J]. 西安交通大学学报,2015,49(10): 143-150. doi: 10.7652/xjtuxb201510023

    DENG Tao, LING Chunsong, LI Yanan, et al. A multi-objective optimization method for energy management control of hybrid electric vehicles using NSGA-II algorithm[J]. Journal of Xi’an Jiaotong University, 2015, 49(10): 143-150. doi: 10.7652/xjtuxb201510023
    周放,宋传学,梁天唯,等. 采用NSGA-Ⅱ算法的车载复合电源参数匹配[J]. 吉林大学学报(工学版),2017,47(5): 1336-1343.

    ZHOU Fang, SONG Chuanxue, LIANG Tianwei, et al. Parameter matching of on-board hybrid energy storage system using NSGA-Ⅱ algorithm[J]. Journal of Jilin University (Engineering Edition), 2017, 47(5): 1336-1343.
    宋传学,周放,肖峰,等. 基于凸优化的车载复合电源参数匹配[J]. 机械工程学报,2017,53(16): 44-51. doi: 10.3901/JME.2017.16.044

    SONG Chuanxue, ZHOU Fang, XIAO Feng, et al. Parameter matching of on-board hybrid energy storage system based on convex optimization method[J]. Journal of Mechanical Engineering, 2017, 53(16): 44-51. doi: 10.3901/JME.2017.16.044
    田文奇, 和敬涵, 姜久春, 等. 基于自适应变异粒子群算法的电动汽车换电池站充电调度多目标优化[J]. 电网技术, 2012(11): 25-29.

    TIAN Wenqi, HE Jinghan, JIANG Jiuchun, et al. Multi-objective optimization of charging dispatching for electric vehicle battery swapping station based on adaptive mutation particle swarm optimization[J]. Power System Technology, 2012(11): 25-29.
    DE BOER P T, KROESE D, MANNOR S, et al. A tutorial on the cross-entropy method[J]. Annals of Operations Research, 2005, 134(1): 19-67. doi: 10.1007/s10479-005-5724-z
    袁义悦. 基于ADVISOR二次开发的车载复合电源参数匹配研究[D]. 哈尔滨: 哈尔滨工业大学, 2012.
    MARANO V, ONORI S, GUEZENNEC Y, et al. Lithium-ion batteries life estimation for plug-in hybrid electric vehicles[C]//Vehicle Power and Propulsion Conference, 2009. [S.l.]: IEEE, 2009: 536-54.
    DUO Z, CHENXI H, QICHAO T. CEGA: research on improved multi-objective CE optimization algorithm[C]//37th Chinese Control Conference. [S.l.]: IEEE, 2018: 2463-2467.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(4)

    Article views(716) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return