• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 59 Issue 2
Apr.  2024
Turn off MathJax
Article Contents
LI Fuhai, TANG Huiqi, LI Jiyun, LIU Menghui, WANG Jiangshan, CHEN Shuang, XU Tengfei. Concrete Elastic Modulus and Creep Control Based on Dense Packing Theory[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 404-412. doi: 10.3969/j.issn.0258-2724.20210431
Citation: LI Fuhai, TANG Huiqi, LI Jiyun, LIU Menghui, WANG Jiangshan, CHEN Shuang, XU Tengfei. Concrete Elastic Modulus and Creep Control Based on Dense Packing Theory[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 404-412. doi: 10.3969/j.issn.0258-2724.20210431

Concrete Elastic Modulus and Creep Control Based on Dense Packing Theory

doi: 10.3969/j.issn.0258-2724.20210431
  • Received Date: 25 May 2021
  • Rev Recd Date: 19 May 2022
  • Available Online: 11 Oct 2023
  • Publish Date: 07 Jul 2022
  • In order to reduce the deflection amplitude of the continuous rigid frame bridge span, an optimized control method of mix proportion based on the dense packing theory of aggregates was proposed for the two influencing factors of elastic modulus and creep. In addition, the original mix proportion was studied to analyze the influence of the optimized control method on the elastic modulus and creep under different ages and environments. At the same time, the optimization mechanism was analyzed from the microscopic level of concrete in combination with scanning electron microscope (SEM) and mercury intrusion porosimetry (MIP) experiments. Based on the CEB-FIP (1990) model, a modified model considering the maturity of elastic modulus was proposed. The results show that the optimized control method can effectively control the elastic modulus of concrete at an early age, but the increase in the area of the interface transition zone limits the later development of the elastic modulus. Under the same conditions, the creep coefficient of the optimized concrete is reduced by 12%–23% compared with the original mix proportion. Moreover, the influence of the environment on the concrete creep is dominant compared with the optimized control method. The variation range of concrete creep under different environments is between 45% and 60%. Concrete creep decreases with the loading age, and the creep of optimized concrete at a small loading age is still 3%–13% lower than the original mix proportion of the concrete at a large loading age. After optimization, the number of internal pores and micro-cracks in the concrete at an early age is reduced. Therefore, the internal structure of the concrete is improved. The modified CEB-FIP (1990) model has higher accuracy in predicting creep.

     

  • loading
  • [1]
    朱世峰. 多跨连续刚构桥结构线形控制与合拢技术研究[D]. 重庆: 重庆交通大学, 2008.
    [2]
    卢志芳. 考虑时变性和不确定性的混凝土桥梁收缩徐变及预应力损失计算方法[D]. 武汉: 武汉理工大学, 2011.
    [3]
    黄国兴, 惠荣炎, 王秀军. 混凝土徐变与收缩[M]. 北京: 中国电力出版社, 2012: 3-4.
    [4]
    罗剑均. 混凝土弹性模量对连续刚构桥跨中下挠影响的研究[D]. 重庆: 重庆交通大学, 2017.
    [5]
    蒋正武,周磊,李文婷. 石灰岩骨料混凝土弹性模量与强度相关性研究[J]. 建筑材料学报,2014,17(4): 649-653. doi: 10.3969/j.issn.1007-9629.2014.04.016

    JIANG Zhengwu, ZHOU Lei, LI Wenting. Study on the correlation between elastic modulus and strength of concrete made with limestone aggregate[J]. Journal of Building Materials, 2014, 17(4): 649-653. doi: 10.3969/j.issn.1007-9629.2014.04.016
    [6]
    陈洪光,许将. C50泵送混凝土弹性模量影响因素的试验研究[J]. 隧道建设,2012,32(6): 802-805.

    CHEN Hongguang XU Jiang. Test on factors influencing elatic modulus of C50 concrete[J]. Tunnel Construction, 2012, 32(6): 802-805.
    [7]
    HAILE BEZAWIT F, JIN D W, YANG B, et al. Multi-level homogenization for the prediction of the mechanical properties of ultra-high-performance concrete[J]. Construction and Building Materials, 2019, 229: 116797.1-116797.17.
    [8]
    郭光玲. 钢纤维增强混凝土的制备及力学性能研究[J]. 功能材料,2020,51(11): 11165-11170. doi: 10.3969/j.issn.1001-9731.2020.11.024

    GUO Guangling. Preparation and mechanical properties of steel fiber reinforced concrete[J]. Journal of Functional Materials, 2020, 51(11): 11165-11170. doi: 10.3969/j.issn.1001-9731.2020.11.024
    [9]
    LI H, WEE T H, WONG S F. Early-age creep and shrinkage of blended cement concrete[J]. Materials Journal, 2002, 99(1): 3-10.
    [10]
    BROOKS J J, MEGAT JOHARI M A. Effect of metakaolin on creep and shrinkage of concrete[J]. Cement and Concrete Composites, 2001, 23(6): 495-502. doi: 10.1016/S0958-9465(00)00095-0
    [11]
    HE Z H, LI L Y, DU S G. Mechanical properties, drying shrinkage, and creep of concrete containing lithium slag[J]. Construction and Building Materials, 2017, 147: 296-304. doi: 10.1016/j.conbuildmat.2017.04.166
    [12]
    VAN DAMME H. Concrete material science: past, present, and future innovations[J]. Cement and Concrete Research, 2018, 112: 5-24. doi: 10.1016/j.cemconres.2018.05.002
    [13]
    MARIO M, RANGEL C S, PEPE M, et al. Optimization of normal and high strength recycled aggregate concrete mixtures by using packing model[J]. Cement and Concrete Composites, 2017, 84: 83-92. doi: 10.1016/j.cemconcomp.2017.08.016
    [14]
    Standards Australia. Determination of creep of concrete cylinders in compression: S1012.16[S]. Sydney: Standards Australia Limited, 1996.
    [15]
    中华人民共和国住房和城乡建设部, 国家市场监督管理总局. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019.
    [16]
    黄维蓉,杨玉柱,刘延杰,等. 含粗骨料超高性能混凝土的力学性能[J]. 硅酸盐学报,2020,48(11): 1747-1755. doi: 10.14062/j.issn.0454-5648.20200118

    HUANG Weirong YANG Yuzhu LIU Yanjie et al. Mechanical properties of ultra-high performance concrete containing coarse aggregate[J]. Journal of the Chinese Ceramic Society, 2020, 48(11): 1747-1755. doi: 10.14062/j.issn.0454-5648.20200118
    [17]
    李华,汪洋,王育江,等. 膨胀剂对混凝土早期基本徐变的影响[J]. 建筑材料学报,2022,25(3): 256-262. doi: 10.3969/j.issn.1007-9629.2022.03.006

    LI Hua, WANG Yang, WANG Yujiang, et al. Effect of expansive additives on basic creep of early-age concrete[J]. Journal of Building Materials, 2022, 25(3): 256-262. doi: 10.3969/j.issn.1007-9629.2022.03.006
    [18]
    张雄,高鹏. 骨料对混凝土干缩性能的影响[J]. 粉煤灰综合利用,2014,27(2): 3-7. doi: 10.3969/j.issn.1005-8249.2014.02.001

    ZHANG Xiong, GAO Peng. Influence of aggregate on dry shrinkage of concrete[J]. Fly Ash Comprehensive Utilization, 2014, 27(2): 3-7. doi: 10.3969/j.issn.1005-8249.2014.02.001
    [19]
    杨杨,吴炎平,李鹏,等. 加载龄期和养护温度对高性能混凝土早期拉伸徐变的影响[J]. 混凝土与水泥制品,2010(4): 10-14. doi: 10.3969/j.issn.1000-4637.2010.04.003
    [20]
    白国良,祁豪,刘超. 再生混凝土徐变试验与预测模型研究[J]. 建筑结构学报,2016,37(增2): 121-126. doi: 10.14006/j.jzjgxb.2016.s2.018

    BAI Guoliang QI Hao LIU Chao. Study on creep test and prediction model of recycled aggregate concrete[J]. Journal of Building Structures, 2016, 37(S2): 121-126. doi: 10.14006/j.jzjgxb.2016.s2.018
    [21]
    American Concrete Institute (ACI). Prediction of creep, shrinkage, and temperature effects inconcrete structures[M]. Farminton Hills: ACI Committee 318, 2008.
    [22]
    Committee Euro-International Beton and Federation International De La Precontitute. CEB-FIP model code for concrete structures 1990[S]. London: Thomas Teloford Services Ltd., 1990.
    [23]
    International Federation for Structural Concrete (FIB). Fib model code for concrete structures 2010[M]. Hoboken: Ernst & Sohn, 2010.
    [24]
    Standards Australia. Australian standard AS 3600: 2018[S]. Sydney: Standards Australia Limited, 2018.
    [25]
    BAZAN ZDENĚK P, SANDEEP B . Justification and refinements of model B3 for concrete creep and shrinkage 2. Updating and theoretical basis[J]. Materials and Structures, 1995, 28(8): 488-495.
    [26]
    GARDNER N J. Comparison of prediction provisions for drying shrinkage and creep of normal-strength concretes[J]. Materials Science, 2004, 31(5): 767–775.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article views(250) PDF downloads(48) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return