• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 58 Issue 2
Apr.  2023
Turn off MathJax
Article Contents
TANG Hongyuan, LIAO Jing, LIU Ruizhong, HU Xiaowei. Bearing Capacity of Concrete-Filled Double Skin Stub Columns with Square outer Stainless Steel tube Under Axial Compression[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 421-429. doi: 10.3969/j.issn.0258-2724.20210388
Citation: TANG Hongyuan, LIAO Jing, LIU Ruizhong, HU Xiaowei. Bearing Capacity of Concrete-Filled Double Skin Stub Columns with Square outer Stainless Steel tube Under Axial Compression[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 421-429. doi: 10.3969/j.issn.0258-2724.20210388

Bearing Capacity of Concrete-Filled Double Skin Stub Columns with Square outer Stainless Steel tube Under Axial Compression

doi: 10.3969/j.issn.0258-2724.20210388
  • Received Date: 12 May 2021
  • Rev Recd Date: 18 Oct 2021
  • Available Online: 07 Jan 2023
  • Publish Date: 13 Dec 2021
  • In order to promote the application of square concrete-filled double skin tube (SCFDST) columns with outer stainless steel tube in civil engineering, six groups of specimens with different outer tube thicknesses and different core concrete strength were tested under axial compression, and the failure modes, load–displacement curves, and load–strain curves were obtained. The influences of the width-to-thickness ratio of the stainless steel square tube, the strength of core concrete, and the restraint effect coefficient of stainless steel square tube on the ultimate bearing capacity of SCFDST short columns were further analyzed. Meanwhile, the influence of chamfer on the strength and ductility of specimens was discussed preliminarily, and the minimum thickness calculation method to avoid the inner tube buckling before the outer tube buckling was proposed. Finally, based on the test results and the data in the existing literature, a fitted formula for calculating the compressive capacity of SCFDST short columns was derived; the calculated results by the proposed method were compared with those by the simplified model in the literature and the main foreign specifications, to verify its effectiveness. The results show that with the width-to-thickness ratio decreasing from 34.9 to 20.9, the ultimate bearing capacity was increased by 98.5% on average. When the core concrete strength was increased from C40 to C60, the ultimate bearing capacity of the specimen was increased by 7.3% on average. Besides, the axial ultimate bearing capacity of SCFDST short columns increases linearly with the constraint effect coefficient. Compared with the simplified model in the literature, the formula obtained in this study can predict the bearing capacity of SCFDST short columns.

     

  • loading
  • [1]
    HAN L H, TAO Z, HUANG H, et al. Concrete-filled double skin (SHS outer and CHS inner) steel tubular beam-columns[J]. Thin-Walled Structures, 2004, 42(9): 1329-1355. doi: 10.1016/j.tws.2004.03.017
    [2]
    PAGOULATOU M, SHEEHAN T, DAI X H, et al. Finite element analysis on the capacity of circular concrete-filled double-skin steel tubular (CFDST) stub columns[J]. Engineering Structures, 2014, 72: 102-112. doi: 10.1016/j.engstruct.2014.04.039
    [3]
    UENAKA K, KITOH H, SONODA K. Concrete filled double skin circular stub columns under compression[J]. Thin-Walled Structures, 2010, 48(1): 19-24. doi: 10.1016/j.tws.2009.08.001
    [4]
    HASSANEIN M F, KHAROOB O F, LIANG Q Q. Circular concrete-filled double skin tubular short columns with external stainless steel tubes under axial compression[J]. Thin-Walled Structures, 2013, 73: 252-263. doi: 10.1016/j.tws.2013.08.017
    [5]
    LI W, HAN L H, ZHAO X L. Axial strength of concrete-filled double skin steel tubular (CFDST) columns with preload on steel tubes[J]. Thin-Walled Structures, 2012, 56: 9-20. doi: 10.1016/j.tws.2012.03.004
    [6]
    GUO Z, CHEN Y, WANG Y, et al. Experimental study on square concrete-filled double skin steel tubular short columns[J]. Thin-Walled Structures, 2020, 156: 107017.1-107017.20.
    [7]
    AYOUGH P, SULONG N H R, IBRAHIM Z, et al. Nonlinear analysis of square concrete-filled double-skin steel tubular columns under axial compression[J]. Engineering Structures, 2020, 216: 110678.1-110678.26.
    [8]
    HASSANEIN M F, KHAROOB O F, GARGNER L. Behaviour and design of square concrete-filled double skin tubular columns with inner circular tubes[J]. Engineering Structures, 2015, 100: 410-424. doi: 10.1016/j.engstruct.2015.06.022
    [9]
    HASSANEIN M F, ELCHALAKANI M, KARRECH A, et al. Behaviour of concrete-filled double-skin short columns under compression through finite element modelling: SHS outer and SHS inner tubes[J]. Structures, 2018, 14: 358-375. doi: 10.1016/j.istruc.2018.04.006
    [10]
    丛术平,彭敏,王继升,等. 方中空夹层钢管混凝土短柱轴压性能试验[J]. 中国科技论文,2019,14(10): 1085-1089.

    CONG Shuping, PENG Min, WANG Jisheng, et al. Experimental research on axial compression performance of square double skin steel tube short columns filled with concrete[J]. China Sciencepaper, 2019, 14(10): 1085-1089.
    [11]
    HUANG H, HAN L H, TAO Z, et al. Analytical behaviour of concrete-filled double skin steel tubular (CFDST) stub columns[J]. Journal of Constructional Steel Research, 2010, 66(4): 542-555. doi: 10.1016/j.jcsr.2009.09.014
    [12]
    HAN L H, LI Y J, LIAO F Y, et al. Concrete-filled double skin steel tubular (CFDST) columns subjected to long-term sustained loading[J]. Thin-Walled Structures, 2011, 49(12): 1534-1543. doi: 10.1016/j.tws.2011.08.001
    [13]
    HAN L H, HUANG H, TAO Z, et al. Concrete-filled double skin steel tubular (CFDST) beam-columns subjected to cyclic bending[J]. Engineering Structures, 2006, 28(12): 1698-1714. doi: 10.1016/j.engstruct.2006.03.004
    [14]
    WANG F Y, YOUNG B, GARDNER L, et al. CFDST sections with square stainless steel outer tubes under axial compression: experimental investigation, numerical modelling and design[J]. Engineering Structures, 2020, 207: 110189.1-110189.13. doi: 10.1016/j.engstruct.2020.110189
    [15]
    WANG F C, HAN L H, LI W, et al. Analytical behavior of CFDST stub columns with external stainless steel tubes under axial compression[J]. Thin-Walled Structures, 2018, 127: 756-768. doi: 10.1016/j.tws.2018.02.021
    [16]
    HAN L H, REN Q X, LI W, et al. Tests on stub stainless steel-concrete-carbon steel double-skin tubular (DST) columns[J]. Journal of Constructional Steel Research, 2011, 67(3): 437-452. doi: 10.1016/j.jcsr.2010.09.010
    [17]
    TANG H Y, CHEN J L, FAN L Y, et al. Experimental investigation of FRP-confined concrete-filled stainless steel tube stub columns under axial compression[J]. Thin-Walled Structures, 2020, 146: 106483.1-106483.14.
    [18]
    唐红元,李政周,范璐瑶,等. 矩形不锈钢管混凝土短柱轴压性能试验研究[J]. 西南交通大学学报,2022,57(4): 855-864.

    TANG Hongyuan, LI Zhengzhou, FAN Luyao, et al. Experimental investigation on behavior of rectangular concrete-filled stainless steel tubular stub columns under axial loading[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 855-864.
    [19]
    中国建筑科学研究院, 中华人民共和国建设部, 国家质量监督检验检疫总局. 普通混凝土力学性能试验方法标准: GB/T 50081—2002[S]. 北京: 中国建筑工业出版社, 2002.
    [20]
    朱浩川,姚谏. 不锈钢材料的应力-应变模型[J]. 空间结构,2011,17(1): 62-69.

    ZHU Haochuan, YAO Jian. Stress-strain model for stainless steel[J]. Spatial Structures, 2011, 17(1): 62-69.
    [21]
    CRUISE R B, GARDNER L. Strength enhancements induced during cold forming of stainless steel sections[J]. Journal of Constructional Steel Research, 2008, 64(11): 1310-1316. doi: 10.1016/j.jcsr.2008.04.014
    [22]
    WANG Y L, CAI G, LARBI A S, et al. Monotonic axial compressive behaviour and confinement mechanism of square CFRP-steel tube confined concrete[J]. Engineering Structures, 2020, 217: 110802.1-110802.16.
    [23]
    PHAM T M, HADI M N S. Stress prediction model for FRP confined rectangular concrete columns with rounded corners[J]. Journal of Composites for Construction, 2014, 18(1): 04013019.1-04013019.10.
    [24]
    HAN T H, STALLINGS J M, KANG Y J, et al. Nonlinear concrete model for double-skinned composite tubular columns[J]. Construction and Building Materials, 2010, 24(12): 2542-2553. doi: 10.1016/j.conbuildmat.2010.06.001
    [25]
    KERR A D, SOIFER M T. The linearization of the prebuckling state and its effect on the determined instability loads[J]. Journal of Applied Mechanics, 1969, 36(4): 775-783. doi: 10.1115/1.3564770
    [26]
    European Committee for Standardization. Eurocode 4: design of composite steel and concrete structures part1-1: general rules and rules for buildings[S]. London: British Standards Institution, 1994.
    [27]
    American Concrete Institute (ACI). Building code requirements for structural concrete and commentary: ACI 318-99[S]. Detroit: American Concrete Institute, 1999.
    [28]
    American Institute of Steel Construction. Specification for structural steel buildings: AISC 360 [S]. Chicago: [s.n.], 2016
    [29]
    Standards Australia. Bridge design, part 6: steel and composite construction: AS5100.6—2004[S]. Sydney: Standards Australia International Ltd., 2004.
    [30]
    HAN L H, ZHAO X L, TAO Z. Tests and mechanics model for concrete-filled SHS stub columns, columns and beam-columns[J]. Steel and Composite Structures, 2001, 1(1): 51-74. doi: 10.12989/scs.2001.1.1.051
    [31]
    韩林海. 钢管混凝土结构——理论与实践[M]. 3版. 北京: 科学出版社, 2016.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article views(295) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return