• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
TANG Hongyuan, LIAO Jing, LIU Ruizhong, HU Xiaowei. Bearing Capacity of Concrete-Filled Double Skin Stub Columns with Square outer Stainless Steel tube Under Axial Compression[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 421-429. doi: 10.3969/j.issn.0258-2724.20210388
Citation: TANG Hongyuan, LIAO Jing, LIU Ruizhong, HU Xiaowei. Bearing Capacity of Concrete-Filled Double Skin Stub Columns with Square outer Stainless Steel tube Under Axial Compression[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 421-429. doi: 10.3969/j.issn.0258-2724.20210388

Bearing Capacity of Concrete-Filled Double Skin Stub Columns with Square outer Stainless Steel tube Under Axial Compression

doi: 10.3969/j.issn.0258-2724.20210388
  • Received Date: 12 May 2021
  • Rev Recd Date: 18 Oct 2021
  • Available Online: 07 Jan 2023
  • Publish Date: 13 Dec 2021
  • In order to promote the application of square concrete-filled double skin tube (SCFDST) columns with outer stainless steel tube in civil engineering, six groups of specimens with different outer tube thicknesses and different core concrete strength were tested under axial compression, and the failure modes, load–displacement curves, and load–strain curves were obtained. The influences of the width-to-thickness ratio of the stainless steel square tube, the strength of core concrete, and the restraint effect coefficient of stainless steel square tube on the ultimate bearing capacity of SCFDST short columns were further analyzed. Meanwhile, the influence of chamfer on the strength and ductility of specimens was discussed preliminarily, and the minimum thickness calculation method to avoid the inner tube buckling before the outer tube buckling was proposed. Finally, based on the test results and the data in the existing literature, a fitted formula for calculating the compressive capacity of SCFDST short columns was derived; the calculated results by the proposed method were compared with those by the simplified model in the literature and the main foreign specifications, to verify its effectiveness. The results show that with the width-to-thickness ratio decreasing from 34.9 to 20.9, the ultimate bearing capacity was increased by 98.5% on average. When the core concrete strength was increased from C40 to C60, the ultimate bearing capacity of the specimen was increased by 7.3% on average. Besides, the axial ultimate bearing capacity of SCFDST short columns increases linearly with the constraint effect coefficient. Compared with the simplified model in the literature, the formula obtained in this study can predict the bearing capacity of SCFDST short columns.

     

  • [1]
    HAN L H, TAO Z, HUANG H, et al. Concrete-filled double skin (SHS outer and CHS inner) steel tubular beam-columns[J]. Thin-Walled Structures, 2004, 42(9): 1329-1355. doi: 10.1016/j.tws.2004.03.017
    [2]
    PAGOULATOU M, SHEEHAN T, DAI X H, et al. Finite element analysis on the capacity of circular concrete-filled double-skin steel tubular (CFDST) stub columns[J]. Engineering Structures, 2014, 72: 102-112. doi: 10.1016/j.engstruct.2014.04.039
    [3]
    UENAKA K, KITOH H, SONODA K. Concrete filled double skin circular stub columns under compression[J]. Thin-Walled Structures, 2010, 48(1): 19-24. doi: 10.1016/j.tws.2009.08.001
    [4]
    HASSANEIN M F, KHAROOB O F, LIANG Q Q. Circular concrete-filled double skin tubular short columns with external stainless steel tubes under axial compression[J]. Thin-Walled Structures, 2013, 73: 252-263. doi: 10.1016/j.tws.2013.08.017
    [5]
    LI W, HAN L H, ZHAO X L. Axial strength of concrete-filled double skin steel tubular (CFDST) columns with preload on steel tubes[J]. Thin-Walled Structures, 2012, 56: 9-20. doi: 10.1016/j.tws.2012.03.004
    [6]
    GUO Z, CHEN Y, WANG Y, et al. Experimental study on square concrete-filled double skin steel tubular short columns[J]. Thin-Walled Structures, 2020, 156: 107017.1-107017.20.
    [7]
    AYOUGH P, SULONG N H R, IBRAHIM Z, et al. Nonlinear analysis of square concrete-filled double-skin steel tubular columns under axial compression[J]. Engineering Structures, 2020, 216: 110678.1-110678.26.
    [8]
    HASSANEIN M F, KHAROOB O F, GARGNER L. Behaviour and design of square concrete-filled double skin tubular columns with inner circular tubes[J]. Engineering Structures, 2015, 100: 410-424. doi: 10.1016/j.engstruct.2015.06.022
    [9]
    HASSANEIN M F, ELCHALAKANI M, KARRECH A, et al. Behaviour of concrete-filled double-skin short columns under compression through finite element modelling: SHS outer and SHS inner tubes[J]. Structures, 2018, 14: 358-375. doi: 10.1016/j.istruc.2018.04.006
    [10]
    丛术平,彭敏,王继升,等. 方中空夹层钢管混凝土短柱轴压性能试验[J]. 中国科技论文,2019,14(10): 1085-1089.

    CONG Shuping, PENG Min, WANG Jisheng, et al. Experimental research on axial compression performance of square double skin steel tube short columns filled with concrete[J]. China Sciencepaper, 2019, 14(10): 1085-1089.
    [11]
    HUANG H, HAN L H, TAO Z, et al. Analytical behaviour of concrete-filled double skin steel tubular (CFDST) stub columns[J]. Journal of Constructional Steel Research, 2010, 66(4): 542-555. doi: 10.1016/j.jcsr.2009.09.014
    [12]
    HAN L H, LI Y J, LIAO F Y, et al. Concrete-filled double skin steel tubular (CFDST) columns subjected to long-term sustained loading[J]. Thin-Walled Structures, 2011, 49(12): 1534-1543. doi: 10.1016/j.tws.2011.08.001
    [13]
    HAN L H, HUANG H, TAO Z, et al. Concrete-filled double skin steel tubular (CFDST) beam-columns subjected to cyclic bending[J]. Engineering Structures, 2006, 28(12): 1698-1714. doi: 10.1016/j.engstruct.2006.03.004
    [14]
    WANG F Y, YOUNG B, GARDNER L, et al. CFDST sections with square stainless steel outer tubes under axial compression: experimental investigation, numerical modelling and design[J]. Engineering Structures, 2020, 207: 110189.1-110189.13. doi: 10.1016/j.engstruct.2020.110189
    [15]
    WANG F C, HAN L H, LI W, et al. Analytical behavior of CFDST stub columns with external stainless steel tubes under axial compression[J]. Thin-Walled Structures, 2018, 127: 756-768. doi: 10.1016/j.tws.2018.02.021
    [16]
    HAN L H, REN Q X, LI W, et al. Tests on stub stainless steel-concrete-carbon steel double-skin tubular (DST) columns[J]. Journal of Constructional Steel Research, 2011, 67(3): 437-452. doi: 10.1016/j.jcsr.2010.09.010
    [17]
    TANG H Y, CHEN J L, FAN L Y, et al. Experimental investigation of FRP-confined concrete-filled stainless steel tube stub columns under axial compression[J]. Thin-Walled Structures, 2020, 146: 106483.1-106483.14.
    [18]
    唐红元,李政周,范璐瑶,等. 矩形不锈钢管混凝土短柱轴压性能试验研究[J]. 西南交通大学学报,2022,57(4): 855-864.

    TANG Hongyuan, LI Zhengzhou, FAN Luyao, et al. Experimental investigation on behavior of rectangular concrete-filled stainless steel tubular stub columns under axial loading[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 855-864.
    [19]
    中国建筑科学研究院, 中华人民共和国建设部, 国家质量监督检验检疫总局. 普通混凝土力学性能试验方法标准: GB/T 50081—2002[S]. 北京: 中国建筑工业出版社, 2002.
    [20]
    朱浩川,姚谏. 不锈钢材料的应力-应变模型[J]. 空间结构,2011,17(1): 62-69.

    ZHU Haochuan, YAO Jian. Stress-strain model for stainless steel[J]. Spatial Structures, 2011, 17(1): 62-69.
    [21]
    CRUISE R B, GARDNER L. Strength enhancements induced during cold forming of stainless steel sections[J]. Journal of Constructional Steel Research, 2008, 64(11): 1310-1316. doi: 10.1016/j.jcsr.2008.04.014
    [22]
    WANG Y L, CAI G, LARBI A S, et al. Monotonic axial compressive behaviour and confinement mechanism of square CFRP-steel tube confined concrete[J]. Engineering Structures, 2020, 217: 110802.1-110802.16.
    [23]
    PHAM T M, HADI M N S. Stress prediction model for FRP confined rectangular concrete columns with rounded corners[J]. Journal of Composites for Construction, 2014, 18(1): 04013019.1-04013019.10.
    [24]
    HAN T H, STALLINGS J M, KANG Y J, et al. Nonlinear concrete model for double-skinned composite tubular columns[J]. Construction and Building Materials, 2010, 24(12): 2542-2553. doi: 10.1016/j.conbuildmat.2010.06.001
    [25]
    KERR A D, SOIFER M T. The linearization of the prebuckling state and its effect on the determined instability loads[J]. Journal of Applied Mechanics, 1969, 36(4): 775-783. doi: 10.1115/1.3564770
    [26]
    European Committee for Standardization. Eurocode 4: design of composite steel and concrete structures part1-1: general rules and rules for buildings[S]. London: British Standards Institution, 1994.
    [27]
    American Concrete Institute (ACI). Building code requirements for structural concrete and commentary: ACI 318-99[S]. Detroit: American Concrete Institute, 1999.
    [28]
    American Institute of Steel Construction. Specification for structural steel buildings: AISC 360 [S]. Chicago: [s.n.], 2016
    [29]
    Standards Australia. Bridge design, part 6: steel and composite construction: AS5100.6—2004[S]. Sydney: Standards Australia International Ltd., 2004.
    [30]
    HAN L H, ZHAO X L, TAO Z. Tests and mechanics model for concrete-filled SHS stub columns, columns and beam-columns[J]. Steel and Composite Structures, 2001, 1(1): 51-74. doi: 10.12989/scs.2001.1.1.051
    [31]
    韩林海. 钢管混凝土结构——理论与实践[M]. 3版. 北京: 科学出版社, 2016.
  • Relative Articles

    [1]DENG Zongcai, WANG Tianyu. Axial Compression Performance of Concrete Columns Confined by Ultra-High Performance Concrete Reinforced with High-Strength Steel Wire Cloth[J]. Journal of Southwest Jiaotong University, 2025, 60(1): 72-82. doi: 10.3969/j.issn.0258-2724.20230096
    [2]WANG Jiali, WANG Ying, CHEN Xiwen, YANG Dongxu, LAI Zhichao. Comparison of Shear Behaviors of Different Concrete-Filled High-Strength Steel Tubes[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230485
    [3]YAO Xingyou, HU Chengli, LIU Yafei, GUO Yanli. Axial Compression Test and Bearing Capacity Design Method of Cold-Formed Steel with Unequal-Leg Lipped Angles[J]. Journal of Southwest Jiaotong University, 2025, 60(1): 93-102. doi: 10.3969/j.issn.0258-2724.20230010
    [4]LIU Chengqing, DENG Youyi, FANG Dengjia, LIU Yue. Calculation Method of Axial Compression Capacity for Rectangular Short Reinforced Concrete Columns Confined with Innovative Five-Spiral Stirrups[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1157-1164, 1174. doi: 10.3969/j.issn.0258-2724.20200561
    [5]TANG Hongyuan, LI Zhengzhou, FAN Luyao, YANG Hong. Experimental Investigation on Behavior of Rectangular Concrete-Filled Stainless Steel Tubular Stub Columns under Axial Loading[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 855-864. doi: 10.3969/j.issn.0258-2724.20200416
    [6]CHEN Zhao, WEN Tao, WU Haonan, LI Fuhai. Calculation Methods of Ultimate Tensile Strength for Screw Anchors[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 1094-1099. doi: 10.3969/j.issn.0258-2724.20200404
    [7]YAO Yao, WANG Lingxu, ZHANG Youjia. Axial Bearing Capacity of Angle Parallel Reinforcement for High Voltage Transmission Towers[J]. Journal of Southwest Jiaotong University, 2020, 55(3): 561-569. doi: 10.3969/j.issn.0258-2724.20190370
    [8]WANG Jun, LIN Guojin, TANG Xie, XU Guowen, TANG Rui. Failure Characteristics and Engineering Application of Layered Rock with Two Pre-existing Non-coplanar Fissures[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 719-725, 732. doi: 10.3969/j.issn.0258-2724.20180044
    [9]SHAO Yongbo, ZHU Hongmei, YANG Dongping. Static Bearing Capacity Analysis of CFRP-Reinforced Short CHS Steel Tubular Columns under Axial Compression[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 167-174. doi: 10.3969/j.issn.0258-2724.20180527
    [10]LIU Jian, ZHANG Pengcheng, JIANG Jin, TIAN Yong, LIU Changjiang, CHEN Yuan, ZHANG Shihao, CAO Zhanbin. Axial Bearing Capacity Analysis of H-Section Steel-Reinforced Recycled Aggregate Concrete Filled Circular Steel Tube Stub Columns[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1280-1286. doi: 10.3969/j.issn.0258-2724.20190244
    [11]CAO Bing, CHEN Junda, DU Yihan, HUANG Bo, HUANG Jun, XIA Junwu. Axial Compressive Properties of Prefabricated Circular Steel Tube Confined Concrete Columns[J]. Journal of Southwest Jiaotong University, 2020, 55(5): 1017-1027. doi: 10.3969/j.issn.0258-2724.20180867
    [12]ZHAO Canhui, LI Haodao, DENG Kailai. Experimental Study on Bonding Performance Between Rebar and Coarse Aggregate Ultra-High Performance Concrete[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 937-944. doi: 10.3969/j.issn.0258-2724.20170513
    [13]SU Chengguang, LIU Dan, CAO Shihao, ZHAO Pingrui, LIU Xueyi. Analysis of Static and Dynamic Flexural Failure Mode of Double-Layer Concrete Composite Beam[J]. Journal of Southwest Jiaotong University, 2017, 30(4): 731-737. doi: 10.3969/j.issn.0258-2724.2017.04.011
    [14]PAN Yi, WU Xiaofei, WAN Li, YUAN Shuang. Experimental Study on Axially Loaded Circle-Section Concrete Columns Confined by CFRP under Long-Term Load[J]. Journal of Southwest Jiaotong University, 2016, 29(5): 847-854. doi: 10.3969/j.issn.0258-2724.2016.05.005
    [15]DENG Zongcai, WANG Yichao. Axial Compression Stress-Strain Model for UHPC Cylinders Confined by FRP[J]. Journal of Southwest Jiaotong University, 2015, 28(4): 641-647. doi: 10.3969/j.issn.0258-2724.2015.04.011
    [16]XIANG Kai, WANG Guo-Hui. Experimental Research on Load-Bearing Capacity of Fire-Damaged Reinforced Concrete Continuous T-Beams[J]. Journal of Southwest Jiaotong University, 2011, 24(6): 933-939. doi: 10.3969/j.issn.0258-2724.2011.06.008
    [17]PAN Yi, YANG Cheng, LIN Yongjun, ZHAO Shichun. BP Neural Network-Based Prediction of Load-Bearing Capacity of Concrete Column Reinforced by FRP[J]. Journal of Southwest Jiaotong University, 2008, 21(6): 736-739.
    [18]HUANCshuang一hua, HUANCXiong一jun. ComPutationoftheUltlmateBearingCaPacityofSteelReinforeed ConCreteLoW-RISeShearWallSwithFrame[J]. Journal of Southwest Jiaotong University, 2001, 14(4): 360-364.
  • Cited by

    Periodical cited type(1)

    1. 廖鹏程,邹欣. 不锈钢-钢管夹层混凝土柱轴压性能研究. 福建建材. 2023(04): 61-63 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 27.0 %FULLTEXT: 27.0 %META: 67.1 %META: 67.1 %PDF: 5.9 %PDF: 5.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 9.4 %其他: 9.4 %其他: 0.5 %其他: 0.5 %Seattle: 0.2 %Seattle: 0.2 %[]: 0.2 %[]: 0.2 %上海: 1.1 %上海: 1.1 %东营: 0.4 %东营: 0.4 %临汾: 0.5 %临汾: 0.5 %临沂: 0.4 %临沂: 0.4 %乌鲁木齐: 0.2 %乌鲁木齐: 0.2 %兰州: 0.2 %兰州: 0.2 %北京: 11.3 %北京: 11.3 %十堰: 0.2 %十堰: 0.2 %合肥: 0.2 %合肥: 0.2 %哥伦布: 0.4 %哥伦布: 0.4 %嘉兴: 0.4 %嘉兴: 0.4 %大庆: 0.5 %大庆: 0.5 %大连: 0.4 %大连: 0.4 %天津: 1.4 %天津: 1.4 %安康: 0.2 %安康: 0.2 %宣城: 0.7 %宣城: 0.7 %巴音郭楞: 0.2 %巴音郭楞: 0.2 %常德: 0.2 %常德: 0.2 %广州: 0.2 %广州: 0.2 %张家口: 3.4 %张家口: 3.4 %徐州: 0.2 %徐州: 0.2 %成都: 2.5 %成都: 2.5 %揭阳: 0.2 %揭阳: 0.2 %昆明: 0.2 %昆明: 0.2 %池州: 0.4 %池州: 0.4 %沈阳: 0.2 %沈阳: 0.2 %洛阳: 0.2 %洛阳: 0.2 %深圳: 0.9 %深圳: 0.9 %温州: 0.2 %温州: 0.2 %湖州: 0.2 %湖州: 0.2 %漯河: 1.1 %漯河: 1.1 %烟台: 0.2 %烟台: 0.2 %芒廷维尤: 14.4 %芒廷维尤: 14.4 %芝加哥: 0.4 %芝加哥: 0.4 %蚌埠: 0.2 %蚌埠: 0.2 %西宁: 41.5 %西宁: 41.5 %西安: 0.5 %西安: 0.5 %西雅图: 0.2 %西雅图: 0.2 %诺沃克: 0.2 %诺沃克: 0.2 %贵阳: 0.9 %贵阳: 0.9 %运城: 0.9 %运城: 0.9 %遂宁: 0.4 %遂宁: 0.4 %郑州: 0.5 %郑州: 0.5 %重庆: 0.5 %重庆: 0.5 %长沙: 0.2 %长沙: 0.2 %青岛: 0.4 %青岛: 0.4 %其他其他Seattle[]上海东营临汾临沂乌鲁木齐兰州北京十堰合肥哥伦布嘉兴大庆大连天津安康宣城巴音郭楞常德广州张家口徐州成都揭阳昆明池州沈阳洛阳深圳温州湖州漯河烟台芒廷维尤芝加哥蚌埠西宁西安西雅图诺沃克贵阳运城遂宁郑州重庆长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article views(371) PDF downloads(32) Cited by(5)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return