• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
LI Xiangdong, NIE Lianfei, ZHU Baolong, LIN Qi, YU Shien. Simplified Calculation Method for Dynamic Characteristics of Pulse Wind Tunnel Balance Foundation[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 413-422. doi: 10.3969/j.issn.0258-2724.20220563
Citation: LIU Zhihua, ZHAO Hua, SUN Yuping, ZHAO Shichun, ZHAO Jun. Experimental Study on Seismic Behavior of Resilient Circular Concrete Columns[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 184-192. doi: 10.3969/j.issn.0258-2724.20180451

Experimental Study on Seismic Behavior of Resilient Circular Concrete Columns

doi: 10.3969/j.issn.0258-2724.20180451
  • Received Date: 31 Mar 2018
  • Rev Recd Date: 02 Sep 2018
  • Available Online: 21 Dec 2018
  • Publish Date: 01 Feb 2020
  • In order to maintain the positive stiffness and small residual deformation of reinforced concrete columns when they are subjected to tremendous earthquakes that exceed the standard set by current codes, a method of using high-strength and low-bond non-prestressed steel strands as longitudinal reinforcement bars of columns is proposed. In order to verify the effectiveness of this method, horizontal low-frequency cyclic loading tests were performed on four circular reinforced concrete columns under a constant axial load, of which three were reinforced with the above-mentioned longitudinal steel strands (hereinafter referred to as ‘new type columns’) and one with normal-strength (NS) rebars. The effects of shear-span ratios and transverse confinement modes within the potential plastic hinge region on the seismic behavior of the new type columns were studied. The test results show that when the drift ratio of the new type columns with a shear-span ratio of 3 to 4 reaches 6%, it still maintains positive stiffness and the residual drift ratio is less than 2%. Compared with the concrete column reinforced with NS rebars, the lateral bearing capacity of the new type column was increased by 90% and the residual deformation was reduced by 73% at the drift ratio of 6%. Besides, the lateral bearing capacity of the new column can be further increased by 15% and the residual deformation can be further reduced by 21% by adding transverse confinement with bolted steel plates in the plastic hinge zone of the column (1.5D). Comparisons between the experimental and analytical results indicate that the flexural analysis based on Navier’s hypothesis is not suitable for prediction of the lateral bearing capacity of the concrete columns reinforced with steel strands due to the the obvious bond-slip effect of steel strands.

     

  • FUJINO Y, HASHIMOTO S, ABE M. Damage analysis of Hanshin expressway viaducts during 1995 Kobe earthquake I:residual inclination of reinforced concrete piers[J]. Journal of Bridge Engineering, 2005, 10(1): 45-53. doi: 10.1061/(ASCE)1084-0702(2005)10:1(45)
    PRIESTLEY M J N, TAO J R. Seismic response of precast prestressed concrete frames with partially debonded tendons[J]. PCI Journal, 1993, 38(1): 58-69. doi: 10.15554/pcij.01011993.58.69
    吕西林,陈云,毛苑君. 结构抗震设计的新概念——可恢复功能结构[J]. 同济大学学报(自然科学版),2011,39(7): 941-948. doi: 10.3969/j.issn.0253-374x.2011.07.001

    LÜ Xilin, CHEN Yun, MAO Yuanjun. New concept of structural seismic design: earthquake resilient structures[J]. Journal of Tongji University (Natural Science), 2011, 39(7): 941-948. doi: 10.3969/j.issn.0253-374x.2011.07.001
    SARTI F, PALERMO A, PAMPANIN S. Quasi- static cyclic testing of two-thirds scale un-bonded posttensioned rocking dissipative timber walls[J]. Journal of Structural Engineering, 2016, 142(4): 1-28.
    GUERRINI G, RESTREPO J I, SCHOETTLER M J. Self-centering, low-damage, precast post-tensioned columns for accelerated bridge construction in seismic regions[C]// 16th World Conference on Earthquake Engineering. Santiago: [s.n.], 2017: 3921.
    SUN Y P, TAKEUCHI T, FUNATO Y. Earthquake-resisting properties and evaluation of high performance concrete columns with low residual deformation[C]// 15th World Conference on Earthquake Engineering. Lisboa: [s.n.], 2012: 282
    SATYARNO I. Concrete columns incorporating mixed ultra high and normal strength longitudinal reinforcement[D]. Christchurch: Univ. of Canterbury, 1993.
    SUN Y, FUKUHARA T. Development of high seismic performance concrete frames[C]// International Symposium on the Utilization of High Strength/High-Performance Concrete. Washington D. C.: ACI Special Publication, 2005: 615-632.
    叶列平,ASAD U Q,马千里,等. 高强钢筋对框架结构抗震破坏机制和性能控制的研究[J]. 工程抗震与加固改造,2006,28(1): 18-24. doi: 10.3969/j.issn.1002-8412.2006.01.005

    YE Lieping, ASAD U Q, MA Qianli, et al. Study on failure mechanism and seismic performance of passive control RC frame against earthquake[J]. Earthquake Resistant Engineering and Retrofitting, 2006, 28(1): 18-24. doi: 10.3969/j.issn.1002-8412.2006.01.005
    张鑫,韦合,叶列平. 高强钢筋配筋混凝土框架结构抗震性的试验研究[J]. 土木工程学报,2009,42(5): 74-78.

    ZHANG Xin, WEI He, YE Lieping. Experimental study on seismic performance of RC frames reinforced with high-strength steel[J]. China Civil Engineering Journal, 2009, 42(5): 74-78.
    OUSALEM H, TAKATSU H, ISHIKAWA Y, et al. Use of high-strength bars for the seismic performance of high-strength concrete columns[J]. Journal of Advanced Concrete Technology, 2009, 7(1): 123-134. doi: 10.3151/jact.7.123
    SHIM C, CHUNG C H, KIM H H. Experimental evaluation of seismic performance of precast segmental bridge piers with a circular solid section[J]. Engineering Structures, 2008, 30(12): 3782-3792. doi: 10.1016/j.engstruct.2008.07.005
    SHIM C, LEE S, PARK S, et al. Experiments on prefabricated segmental bridge piers with continuous longitudinal reinforcing bars[J]. Engineering Structures, 2017, 132: 671-683. doi: 10.1016/j.engstruct.2016.11.070
    CAI Z K, WANG Z, YANG T Y. Experimental testing and modeling of precast segmental bridge columns with hybrid normal- and high-strength steel rebars[J]. Construction & Building Materials, 2018, 166: 945-955.
    孙玉平,赵世春,赵华. 节能型高恢复性钢筋混凝土柱的抗震性能与评估方法[J]. 土木工程学报,2013,46(5): 105-110.

    SUN Yuping, ZHAO Shichun, ZHAO Hua. Seimic behavior and evaluation of sustainable and resilient concrete columns[J]. China Civil Engineering Journal, 2013, 46(5): 105-110.
    CAI Gaochuang. Seismic performance and evaluation of resilient circular concrete columns[D]. Kobe: Kobe University, 2014
    MA W, TAKEUCHI T, FUJINAGA T, et al. Axial behavior of concrete confined by the steel plates connected with bolts[C]//Summaries of Technical Papers of Annual Meeting. Osaka: Architectural Institute of Japan, 2014: 275-276.
    KOWALSKY M J, PRIESTLEY MJN. Improved analytical model for shear strength of circular reinforced concrete columns in seismic regions[J]. ACI Structural Journal, 2000, 97(3): 388-396.
    SUN Y, SAKINO K. Earthquake-resisting performance of RC columns confined by square steel tubes: Part1 Columns under high axial load[J]. Journal of Structural & Construction Engineering, 1997, 501(62): 93-101.
    KAWASHIMA K, MACRAE G A, HOSHIKUMA J I, et al. Residual displacement response spectrum[J]. Journal of Structural Engineering, 1998, 124(5): 523-530. doi: 10.1061/(ASCE)0733-9445(1998)124:5(523)
  • Relative Articles

    [1]LIU Tingbin, JIA Rubo, ZHANG Chenyu, JIN Wenqiang, ZHAO Jianchang. Bending Capacity Calculation Method for Corroded Reinforced Concrete Beams[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 789-795. doi: 10.3969/j.issn.0258-2724.20190277
    [2]ZHAO Jizhong, XU Xiang, DING Li, KAN Qianhua, KANG Guozheng. Finite Element Analysis of Rolling Strengthening Process for Wheel Tread of High-Speed Trains[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1337-1347. doi: 10.3969/j.issn.0258-2724.20180803
    [3]SUN Lijuan, CUI Kai, YANG Tao, CHENG Qihang. Calculation Method of Trailing Edge Failure Surface of Retrogressive Landslide[J]. Journal of Southwest Jiaotong University, 2019, 54(3): 516-525. doi: 10.3969/j.issn.0258-2724.20170873
    [4]QIANG Bin, LI Yadong, GU Ying, NI Jinrong. Calculation Method of Surface Coverage Based on Shot Peening Random Model[J]. Journal of Southwest Jiaotong University, 2016, 29(6): 1177-1182. doi: 10.3969/j.issn.0258-2724.2016.06.018
    [5]CHEN Xiaoping. Calculation of Longitudinal Connected Slab Reinforcement Considering Expansion and Contraction of Bridge[J]. Journal of Southwest Jiaotong University, 2012, 25(5): 754-760. doi: 10.3969/j.issn.0258-2724.2012.05.005
    [6]SU Qian, BAI Hao, HUANG Junjie, LI Xing. Calculation Method for Embedded Continuous Pile-Board Structure under Thermal Stresses[J]. Journal of Southwest Jiaotong University, 2012, 25(2): 181-186. doi: 10.3969/j.issn.0258-2724.2012.02.002
    [7]SHAN Cheng-Lin. Calculation Method of Bending Crack Width in RC Beams Strengthened by Bonding Steel Plate[J]. Journal of Southwest Jiaotong University, 2010, 23(4): 508-513. doi: 10. 3969/ j. issn. 0258-2724.
    [8]ZHOU Wen, LIU Xueyi. FEM Simulation of Straightening Tongue Rail of High-Speed Turnout[J]. Journal of Southwest Jiaotong University, 2008, 21(1): 82-85,95.
    [9]YANG Yang, LIU Weixiong, LE Jialing, WANG Jinnuo. Design of Direct-Connect Impulse Combustion Wind Tunnel[J]. Journal of Southwest Jiaotong University, 2008, 21(3): 387-391.
    [10]ZHANG Yuan-hai, LI Qiao. Finite Element Analysis of Shear Lag Effect of Skew Box Girder Bridges[J]. Journal of Southwest Jiaotong University, 2005, 18(1): 64-68.
    [11]LIUAi-rong, PAN Yi-su, ZHOUBen-kuan. Finite Element Analysis for Shape Memory Alloys[J]. Journal of Southwest Jiaotong University, 2001, 14(2): 157-151.
    [12]BAI Zhi-yong. The Analysis and Calculation of Starting Conditions for the Loose Matters to Form Debris Flow[J]. Journal of Southwest Jiaotong University, 2001, 14(3): 318-321.
    [13]ZUO De-yuan, ZHENGAn-qi. An Elastic-Plastic Finite Element Analysis on Tunnel Structures at Cycled Temperatures[J]. Journal of Southwest Jiaotong University, 2001, 14(2): 172-175.
    [14]CHENG Qiang, LUO Shu-xue, PENG Xiong-zhi. Correlation of Scale of Fluctuation with Soil Property Parameters and Its Calculation Method[J]. Journal of Southwest Jiaotong University, 2000, 13(5): 496-500.
  • Cited by

    Periodical cited type(1)

    1. 朱宝龙,李凯,林其,于时恩. 层状地基对脉冲风洞天平基础振动特征影响分析. 地震工程与工程振动. 2024(06): 125-137 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-062025-070510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 25.3 %FULLTEXT: 25.3 %META: 70.3 %META: 70.3 %PDF: 4.4 %PDF: 4.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.5 %其他: 7.5 %上海: 0.4 %上海: 0.4 %佛山: 0.7 %佛山: 0.7 %六安: 0.2 %六安: 0.2 %兰州: 0.2 %兰州: 0.2 %凉山: 0.2 %凉山: 0.2 %北京: 2.6 %北京: 2.6 %南京: 0.2 %南京: 0.2 %厦门: 0.2 %厦门: 0.2 %哥伦布: 0.7 %哥伦布: 0.7 %大庆: 0.2 %大庆: 0.2 %天津: 0.4 %天津: 0.4 %宣城: 0.2 %宣城: 0.2 %山景城: 0.4 %山景城: 0.4 %常州: 0.2 %常州: 0.2 %常德: 0.2 %常德: 0.2 %广州: 0.9 %广州: 0.9 %张家口: 8.8 %张家口: 8.8 %惠州: 0.2 %惠州: 0.2 %成都: 1.5 %成都: 1.5 %扬州: 0.2 %扬州: 0.2 %昆明: 0.2 %昆明: 0.2 %曼谷: 0.4 %曼谷: 0.4 %杭州: 0.2 %杭州: 0.2 %武汉: 2.4 %武汉: 2.4 %池州: 0.9 %池州: 0.9 %洛杉矶: 0.4 %洛杉矶: 0.4 %深圳: 0.4 %深圳: 0.4 %湖州: 1.1 %湖州: 1.1 %漯河: 0.4 %漯河: 0.4 %濮阳: 0.2 %濮阳: 0.2 %烟台: 0.2 %烟台: 0.2 %石家庄: 2.4 %石家庄: 2.4 %福州: 0.2 %福州: 0.2 %绵阳: 1.3 %绵阳: 1.3 %芒廷维尤: 20.7 %芒廷维尤: 20.7 %芝加哥: 0.2 %芝加哥: 0.2 %苏州: 0.2 %苏州: 0.2 %襄阳: 0.2 %襄阳: 0.2 %西宁: 27.5 %西宁: 27.5 %西安: 0.9 %西安: 0.9 %诺沃克: 0.4 %诺沃克: 0.4 %贵阳: 9.0 %贵阳: 9.0 %迈阿密: 0.4 %迈阿密: 0.4 %运城: 1.8 %运城: 1.8 %长沙: 0.9 %长沙: 0.9 %青岛: 0.2 %青岛: 0.2 %其他上海佛山六安兰州凉山北京南京厦门哥伦布大庆天津宣城山景城常州常德广州张家口惠州成都扬州昆明曼谷杭州武汉池州洛杉矶深圳湖州漯河濮阳烟台石家庄福州绵阳芒廷维尤芝加哥苏州襄阳西宁西安诺沃克贵阳迈阿密运城长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article views(589) PDF downloads(17) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return