• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 59 Issue 2
Apr.  2024
Turn off MathJax
Article Contents
LI Jin, SHI Yuefeng, XIAO Xin, LOU Liangwei, CAI Degou, XIAO Feipeng. Freeze-Thaw Damage Evolution Model of Asphalt Concrete for Waterproofing Layer in High-Speed Railways[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 281-288. doi: 10.3969/j.issn.0258-2724.20220335
Citation: LI Jin, SHI Yuefeng, XIAO Xin, LOU Liangwei, CAI Degou, XIAO Feipeng. Freeze-Thaw Damage Evolution Model of Asphalt Concrete for Waterproofing Layer in High-Speed Railways[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 281-288. doi: 10.3969/j.issn.0258-2724.20220335

Freeze-Thaw Damage Evolution Model of Asphalt Concrete for Waterproofing Layer in High-Speed Railways

doi: 10.3969/j.issn.0258-2724.20220335
  • Received Date: 07 May 2022
  • Rev Recd Date: 30 Nov 2022
  • Available Online: 03 Nov 2023
  • Publish Date: 01 Dec 2022
  • The freeze-thaw damage evolution of asphalt concrete for waterproofing layer in high-speed railways (shorted as railway asphalt concrete) was investigated. Four kinds of composite polymerized railway asphalt concrete were prepared with different asphalt binders and aggregate gradations, and the deterioration of macro mechanical properties in multiple temperature domains under repeated freeze-thaw cycles was evaluated. Models of freeze-thaw damage evolution for railway asphalt concrete were constructed, and the damage degree under the action of repeated freeze-thaw cycles was calculated. The results show that the retained rate of mechanical properties of the four kinds of railway asphalt concrete is still above 80% after 10 freeze-thaw cycles. The low-temperature fracture energy index is the most sensitive to freeze-thaw cycles, which can timely reflect the deterioration of mechanical properties of railway asphalt concrete. The goodness of fit of all freeze-thaw damage evolution models for railway asphalt concrete that are constructed through statistical reliability theory is nearly 0.99.

     

  • loading
  • [1]
    LIN Z J, NIU F J, LI X L, et al. Characteristics and controlling factors of frost heave in high-speed railway subgrade, Northwest China[J]. Cold Regions Science and Technology, 2018, 153: 33-44. doi: 10.1016/j.coldregions.2018.05.001
    [2]
    HUANG J J, SU Q A, LIU T, et al. Behavior and control of the ballastless track-subgrade vibration induced by high-speed trains moving on the subgrade bed with mud pumping[J]. Shock and Vibration, 2019, 2019: 1-14.
    [3]
    杨国涛. 高寒地区高速铁路路基基床表层冻胀机理与轨道平顺性控制研究[D]. 北京: 北京交通大学, 2020.
    [4]
    XIAO X, CAI D G, LOU L W, et al. Application of asphalt based materials in railway systems: a review[J]. Construction and Building Materials, 2021, 304: 124630.1-124630.22.
    [5]
    FANG M J, HU T, ROSE J G. Geometric composition, structural behavior and material design for asphalt trackbed: a review[J]. Construction and Building Materials, 2020, 262: 120755.1-120755.13.
    [6]
    CHEN X H, TAO T Q, YANG G T, et al. Long-lasting waterproofing solution for the subgrade of high-speed railway in cold region[J]. Journal of Testing and Evaluation, 2019, 47(3): 20180046.1-20180046.13.
    [7]
    LUO Q, FU H, LIU K W, et al. Monitoring of train-induced responses at asphalt support layer of a high-speed ballasted track[J]. Construction and Building Materials, 2021, 298: 123909.1-123909.14.
    [8]
    曾杰. 季冻区沥青混凝土强化基床表层轨下基础结构计算方法与耐久性研究[D]. 成都: 西南交通大学, 2018.
    [9]
    刘亚坤. 季冻区高速铁路无砟轨道沥青混凝土强化基床力学特性研究[D]. 成都: 西南交通大学, 2018.
    [10]
    LIU S, YANG J, CHEN X H, et al. Application of mastic asphalt waterproofing layer in high-speed railway track in cold regions[J]. Applied Sciences, 2018, 8(5): 667.1-667.16.
    [11]
    YANG E H, WANG K C P, LUO Q A, et al. Asphalt concrete layer to support track slab of high-speed railway[J]. Transportation Research Record: Journal of the Transportation Research Board, 2015, 2505(1): 6-14. doi: 10.3141/2505-02
    [12]
    ZHOU J E, CHEN X H, FU Q H, et al. Dynamic responses of asphalt concrete waterproofing layer in ballastless track[J]. Applied Sciences, 2019, 9(3): 375.1-375.19.
    [13]
    XIAO X, LI J, CAI D G, et al. Evolution evaluation of high-speed railway asphalt concrete waterproofing layer during laboratory freeze-thaw cycles[J]. Construction and Building Materials, 2022, 324: 126258.1-126258.12.
    [14]
    XU G, ZHOU J, CHEN X H, et al. Temperature features of the asphalt concrete waterproofing layer on high-speed railway in cold regions[J]. Construction and Building Materials, 2021, 305: 124665.1-124665.11.
    [15]
    LIU S, CHEN X H, YANG J, et al. Numerical study and in situ measurement of temperature features of asphalt supporting layer in slab track system[J]. Construction and Building Materials, 2020, 233: 117343.1-117343.11.
    [16]
    徐刚. 高速铁路沥青混凝土防水封闭层细观特性演变研究[D]. 南京: 东南大学, 2019.
    [17]
    冷严. 季冻区高速铁路沥青混凝土强化基床表层材料制备技术与综合性能试验研究[D]. 成都: 西南交通大学, 2018.
    [18]
    任敏达,丛林,孙思林,等. 多次孔隙水压作用下沥青混合料性能演化试验[J]. 吉林大学学报(工学版),2021,51(4): 1277-1286. doi: 10.13229/j.cnki.jdxbgxb20200225

    REN Minda, CONG Lin, SUN Silin, et al. Experiment of performance evolution of asphalt mixtures under multiple pore water pressure cycles[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(4): 1277-1286. doi: 10.13229/j.cnki.jdxbgxb20200225
    [19]
    中华人民共和国交通运输部. 公路工程沥青及沥青混合料试验规程: JTG E20—2011[S]. 北京: 人民交通出版社, 2011.
    [20]
    CHENG Y C, WANG W S, GONG Y F, et al. Comparative study on the damage characteristics of asphalt mixtures reinforced with an eco-friendly basalt fiber under freeze-thaw cycles[J]. Materials, 2018, 11(12): 22488.1-22488.17.
    [21]
    关宇刚,孙伟,缪昌文. 基于可靠度与损伤理论的混凝土寿命预测模型Ⅰ:模型阐述与建立[J]. 硅酸盐学报,2001,29(6): 530-534. doi: 10.3321/j.issn:0454-5648.2001.06.005

    GUAN Yugang, SUN Wei, MIAO Changwen. One service-life prediction model for the concrete based on the reliability and damage theoriesⅠ: narration and establishment of the model[J]. Journal of the Chinese Ceramic Society, 2001, 29(6): 530-534. doi: 10.3321/j.issn:0454-5648.2001.06.005
    [22]
    张启鹏,顾兴宇,丁济同,等. 沥青混合料蠕变损伤模型与损伤演化[J]. 交通运输工程学报,2021,21(5): 104-113. doi: 10.19818/j.cnki.1671-1637.2021.05.009

    ZHANG Qipeng, GU Xingyu, DING Jitong, et al. Creep damage model and damage evolution of asphalt mixtures[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 104-113. doi: 10.19818/j.cnki.1671-1637.2021.05.009
    [23]
    张峰,李术才,李守凯. 混凝土随机冻融损伤三维预测模型[J]. 土木建筑与环境工程,2011,33(1): 31-35,134.

    ZHANG Feng, LI Shucai, LI Shoukai. Three-dimensional random damage prediction model of concrete caused by freeze-thaw[J]. Journal of Civil, Architectural & Environmental Engineering, 2011, 33(1): 31-35,134.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article views(226) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return