• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
HE Fei, WANG Xu, JIANG Daijun, ZHOU Yalong, LI Junshan, CHEN Hangjie, CHEN Mingwei. Creep Characteristics of Frozen Sand-Concrete Interface Based on Ice Content[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 361-368. doi: 10.3969/j.issn.0258-2724.20220552
Citation: HE Fei, WANG Xu, JIANG Daijun, ZHOU Yalong, LI Junshan, CHEN Hangjie, CHEN Mingwei. Creep Characteristics of Frozen Sand-Concrete Interface Based on Ice Content[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 361-368. doi: 10.3969/j.issn.0258-2724.20220552

Creep Characteristics of Frozen Sand-Concrete Interface Based on Ice Content

doi: 10.3969/j.issn.0258-2724.20220552
  • Received Date: 11 Aug 2022
  • Rev Recd Date: 15 Nov 2022
  • Available Online: 17 Jan 2024
  • Publish Date: 25 Nov 2022
  • Ensuring the long-term stability of the pile foundation in ice-rich frozen soil areas is the key to the safe use of bridge pile foundations in permafrost areas. In order to analyze the influence of ice content on the creep characteristics of the frozen sand-concrete interface, the creep tests of the frozen sand-concrete interface with ice content of 6%, 12%, 16%, 23%, 36%, 60%, and 80% were carried out under −2 ℃ by using self-designed large-scale shear apparatus. According to the test results, except for the accelerated creep of the specimen with 6% ice content, other specimens only experience decay creep and stable creep stages under constant shear stress. With the increase in ice content, the proportion of viscous deformation in the specimen increases, and the viscous deformation in the specimen with 80% ice content exceeds 80% of the total deformation. The stable creep speed is affected comprehensively by the dry density and ice content and is the lowest when the ice content is 16%. Burgers viscoelastic model can simulate the creep curve of frozen sand-concrete interface with high ice content better. With the increase in ice content, the initial shear modulus and viscosity coefficient at the stable creep stage increase first and decrease then. The progressive shear modulus at the initial creep stage decreases exponentially, and the viscosity coefficient at the initial creep stage increases exponentially.

     

  • [1]
    程国栋. 青藏高原多年冻土区路基工程地质研究[J]. 第四纪研究,2003(2): 134-141.

    CHENG Guodong. Research on engineering geology of the roadbed in permafrost regions of Qinghai−Xizang Plateau[J]. Quaternary Sciences, 2003(2): 134-141.
    [2]
    马小杰,张建明,常小晓,等. 高温-高含冰量冻土蠕变试验研究[J]. 岩土工程学报,2007,29(6): 848-852.

    MA Xiaojie, ZHANG Jianming, CHANG Xiaoxiao, et al. Experimental study on creep of warm and ice-rich frozen soil[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(6): 848-852.
    [3]
    曲广周,张建明,程东幸. 青藏高原冻结粉质黏土直剪蠕变特性试验研究[J]. 岩土力学,2011,32(1): 95-98. doi: 10.3969/j.issn.1000-7598.2011.01.015

    QU Guangzhou, ZHANG Jianming, CHENG Dongxing. Experimental study of direct shear Creep properties of frozen silty clay on Qinghai–Tibetan Plateau[J]. Rock and Soil Mechanics, 2011, 32(1): 95-98. doi: 10.3969/j.issn.1000-7598.2011.01.015
    [4]
    刘世伟,张建明,张虎,等. 青藏高原多年冻土长期蠕变变形试验研究[J]. 岩石力学与工程学报,2012,31(增1): 3245-3253.

    LIU Shiwei, ZHANG Jianming, ZHANG Hu, et al. Research on long-term creep test of permafrost on Qinghai–tibet plateau[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S1): 3245-3253.
    [5]
    张虎,张建明,苏凯,等. 冻土原位旁压蠕变试验粘弹性模型分析[J]. 土木建筑与环境工程,2013,35(6): 22-27,39.

    ZHANG Hu, ZHANG Jianming, SU Kai, et al. Viscoelastic model analysis of in-situ pressuremeter creep test in permafrost[J]. Journal of Civil, Architectural & Environmental Engineering, 2013, 35(6): 22-27,39.
    [6]
    杨岁桥,王宁宁,张虎. 高温冻土的蠕变特性试验及蠕变模型研究[J]. 冰川冻土,2020,42(3): 834-842.

    YANG Suiqiao, WANG Ningning, ZHANG Hu. Study on creep test and creep model of warm frozen soil[J]. Journal of Glaciology and Geocryology, 2020, 42(3): 834-842.
    [7]
    ZHAO L Z, YANG P, ZHANG L C, et al. Cyclic direct shear behaviors of an artificial frozen soil-structure interface under constant normal stress and sub-zero temperature[J]. Cold Regions Science and Technology, 2017, 133: 70-81. doi: 10.1016/j.coldregions.2016.10.011
    [8]
    ZHANG Q, ZHANG J M, WANG H L, et al. Mechanical behavior and constitutive relation of the interface between warm frozen silt and cemented soil[J]. Transportation Geotechnics, 2021, 30: 100624.1-100624.9.
    [9]
    HE P F, MU Y H, MA W, et al. Testing and modeling of frozen clay-concrete interface behavior based on large-scale shear tests[J]. Advances in Climate Change Research, 2021, 12(1): 83-94. doi: 10.1016/j.accre.2020.09.010
    [10]
    HE P F, MU Y H, YANG Z H, et al. Freeze-thaw cycling impact on the shear behavior of frozen soil-concrete interface[J]. Cold Regions Science and Technology, 2020, 173: 103024.1-103024.11.
    [11]
    SUN T C, GAO X J, LIAO Y M, et al. Experimental study on adfreezing strength at the interface between silt and concrete[J]. Cold Regions Science and Technology, 2021, 190: 103346.1-103346.11.
    [12]
    何菲. 冻结粉土-混凝土界面非线性剪切蠕变特性研究[D]. 兰州: 兰州交通大学, 2019.
    [13]
    李君善. 冻结砂土与混凝土接触面的剪切蠕变特性试验研究[D]. 兰州: 兰州交通大学, 2021.
    [14]
    中华人民共和国建设部. 岩土工程勘察规范: GB 50021—2001[S]. 北京: 中国建筑工业出版社, 2009.
    [15]
    温智,俞祁浩,马巍,等. 青藏粉土-玻璃钢接触面力学特性直剪试验研究[J]. 岩土力学,2013,34(增2): 45-50.

    WEN Zhi, YU Qihao, MA Wei, et al. Direct shear tests for mechanical characteristics of interface between Qinghai−Tibetan silt and fiberglass reinforced plastics[J]. Rock and Soil Mechanics, 2013, 34(S2): 45-50.
    [16]
    (俄)C. C. 维亚洛夫. 冻土流变学[M]. 刘建坤, 刘尧均, 徐艳(译). 北京: 中国铁道出版社, 2005.
    [17]
    (俄罗斯)Л. Т. 罗曼. 冻土力学[M]. 张长庆, 张泽(译). 北京: 科学出版社, 2016.
  • Relative Articles

    [1]CHEN Long, HU Yifan, CHEN Yonghui, ZHU Lei, ZHANG Tilang. Centrifuge Test on Bearing Capacity of Energy Piles in Sand Affected by Thermal−Cool Cycles[J]. Journal of Southwest Jiaotong University, 2025, 60(1): 83-92. doi: 10.3969/j.issn.0258-2724.20220740
    [2]ZHOU Siwei, LENG Wuming, NIE Rusong, LI Yafeng, DI Honggui, CHEN Weigeng. Geometric Contour of Slip Surfaces and Loosening Earth Pressure in Sand Under Soil-Arching Effect[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1413-1422. doi: 10.3969/j.issn.0258-2724.20210651
    [3]HE Liange, ZHANG Bin, ZHENG Jianjun, ZHOU Lan, SU Jianqiang, SHI Wenjun. Axial Load Distribution Law of High Temperature Thread Pair Considering Material Creep[J]. Journal of Southwest Jiaotong University, 2022, 57(5): 1024-1031. doi: 10.3969/j.issn.0258-2724.20200417
    [4]SHEN Xiang, YUAN Dajun, CAO Yutao, GAO Zhenfeng. Experiments on Material Proportions for Simulating Sandy Layer in Deep Sea[J]. Journal of Southwest Jiaotong University, 2020, 55(3): 628-634. doi: 10.3969/j.issn.0258-2724.20180285
    [5]JIA Mincai, ZHAO Shun, ZHANG Zhen. Experimental Study on Creep Characteristics of Structural Soft Clay under Lateral Unloading Condition[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1257-1263. doi: 10.3969/j.issn.0258-2724.20180718
    [6]WEN Lina, CHENG Qiangong, CHENG Qiang, GUO Xifeng. Study on Creep Test of In-situ Scaling Model of Suspension Bridge Tunnel Anchorage[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 202-209. doi: 10.3969/j.issn.0258-2724.20181013
    [7]YANG Bing, LIU Yifei, WAN Fentao, YANG Tao, FENG Jun, ZHAO Xingquan, ZHENG Dongsheng. Experimental Study on Influence of Particle-Size Distribution on Permeability Coefficient of Sand[J]. Journal of Southwest Jiaotong University, 2016, 29(5): 855-861. doi: 10.3969/j.issn.0258-2724.2016.05.006
    [8]YANG Yongqing, LU Weiwei, LI Xiaobin, YU Xiaohua. Experimental Study and Prediction Model for Concrete Creep in Ambient Environment[J]. Journal of Southwest Jiaotong University, 2015, 28(6): 977-983,1010. doi: 10.3969/j.issn.0258-2724.2015.06.002
    [9]XU Guowen, HE Chuan, DAI Cong, WANG Shimin. Generalized Kelvin Creep Damage Model and Its Parameters' Intelligent Identification[J]. Journal of Southwest Jiaotong University, 2015, 28(5): 866-871. doi: 10.3969/j.issn.0258-2724.2015.05.015
    [10]LIU Huaizhong, XIE Hongqiang, HE Jiangda, XIAO Mingli, ZHUO Li, LIU Jianfeng. Experimental Investigation on Anisotropic Creep Characteristics of Quartz Mica Schist[J]. Journal of Southwest Jiaotong University, 2015, 28(4): 656-661,697. doi: 10.3969/j.issn.0258-2724.2015.04.013
    [11]XU Bing, ZHU Daoli. Variational Inequality Equilibrium Model for Multiclass and Multicriteria Stochastic Traffic Networks with Elastic Demands[J]. Journal of Southwest Jiaotong University, 2008, 21(1): 114-119.
    [12]LUO Runlin, RUAN Huaining, ZHU Changxing. Non-linear Creep Model Based on Plasticity Strengthening and Viscosity Weakening of Rock[J]. Journal of Southwest Jiaotong University, 2008, 21(3): 346-351.
    [13]WU Xiuyi, LIU Changwu, SHEN Rongxi, YANG Xu. Creep Model of Rock Subjected to Water Pressure and External Force[J]. Journal of Southwest Jiaotong University, 2007, 20(6): 720-725.
    [14]WANG Chen, LIUHao-wu, XUQiang. Modified Mesri s Creep Model for Soils in Sliding Zone of Xietan Landslide in the Three Gorges[J]. Journal of Southwest Jiaotong University, 2004, 17(1): 15-19.
    [15]LIUHong, LI Pan-feng, ZHANG Zhuo-yuan. Compressional Creep Test of High Embankment Settlement[J]. Journal of Southwest Jiaotong University, 2004, 17(6): 749-753.
    [16]LIUHong, ZHANG Zhuo-yuan, HANWen-xi. Centrifugal Model Tests for Settlement of High Embankment[J]. Journal of Southwest Jiaotong University, 2003, 16(3): 323-326.
    [17]LUHui, SUNGuo-ying. Analysis of Three Dimensional Elastic-Plastic Stresses of Rail under Non-Ellipse Contact Area[J]. Journal of Southwest Jiaotong University, 2000, 13(4): 340-343.
  • Cited by

    Periodical cited type(2)

    1. 胡峻晖,崔宏环,王跃庚,李续靖. 细粒含量对冻土-桩界面剪切特性影响研究. 力学季刊. 2024(03): 842-854 .
    2. HE Fei,LIU Qingquan,LEI Wanyu,WANG Xu,MAO Erqing,LI Sheng,CHEN Hangjie. Experiment and constitutive modelling of creep deformation in the frozen silt-concrete interface. Journal of Mountain Science. 2024(09): 3172-3185 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-062025-070510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 26.7 %FULLTEXT: 26.7 %META: 65.9 %META: 65.9 %PDF: 7.4 %PDF: 7.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 17.4 %其他: 17.4 %其他: 0.2 %其他: 0.2 %Boydton: 0.2 %Boydton: 0.2 %上海: 0.2 %上海: 0.2 %临沂: 0.2 %临沂: 0.2 %兰州: 0.8 %兰州: 0.8 %内江: 0.8 %内江: 0.8 %北京: 2.1 %北京: 2.1 %十堰: 1.0 %十堰: 1.0 %南京: 0.6 %南京: 0.6 %合肥: 0.2 %合肥: 0.2 %吉林: 0.2 %吉林: 0.2 %咸阳: 0.2 %咸阳: 0.2 %哈尔滨: 0.4 %哈尔滨: 0.4 %哥伦布: 0.4 %哥伦布: 0.4 %嘉兴: 0.2 %嘉兴: 0.2 %大庆: 0.2 %大庆: 0.2 %大连: 0.4 %大连: 0.4 %天津: 1.6 %天津: 1.6 %宣城: 0.4 %宣城: 0.4 %巴彦淖尔: 0.2 %巴彦淖尔: 0.2 %常德: 0.2 %常德: 0.2 %广州: 1.0 %广州: 1.0 %开封: 0.2 %开封: 0.2 %开罗: 0.6 %开罗: 0.6 %张家口: 2.7 %张家口: 2.7 %惠州: 0.4 %惠州: 0.4 %成都: 1.0 %成都: 1.0 %扬州: 1.6 %扬州: 1.6 %抚顺: 0.2 %抚顺: 0.2 %昆明: 0.2 %昆明: 0.2 %杭州: 0.4 %杭州: 0.4 %桂林: 0.2 %桂林: 0.2 %武汉: 2.3 %武汉: 2.3 %池州: 0.4 %池州: 0.4 %沈阳: 0.2 %沈阳: 0.2 %泸州: 0.6 %泸州: 0.6 %洛阳: 0.2 %洛阳: 0.2 %深圳: 0.4 %深圳: 0.4 %温州: 0.4 %温州: 0.4 %湘潭: 0.4 %湘潭: 0.4 %漯河: 3.5 %漯河: 3.5 %烟台: 0.2 %烟台: 0.2 %石家庄: 5.2 %石家庄: 5.2 %福州: 0.2 %福州: 0.2 %芒廷维尤: 15.7 %芒廷维尤: 15.7 %芝加哥: 1.0 %芝加哥: 1.0 %西宁: 19.2 %西宁: 19.2 %西安: 0.2 %西安: 0.2 %西雅图: 0.2 %西雅图: 0.2 %诺沃克: 0.4 %诺沃克: 0.4 %贵阳: 7.9 %贵阳: 7.9 %运城: 1.6 %运城: 1.6 %邯郸: 0.4 %邯郸: 0.4 %郑州: 0.4 %郑州: 0.4 %重庆: 0.2 %重庆: 0.2 %长沙: 1.6 %长沙: 1.6 %雷德蒙德: 0.4 %雷德蒙德: 0.4 %青岛: 0.2 %青岛: 0.2 %鞍山: 0.6 %鞍山: 0.6 %其他其他Boydton上海临沂兰州内江北京十堰南京合肥吉林咸阳哈尔滨哥伦布嘉兴大庆大连天津宣城巴彦淖尔常德广州开封开罗张家口惠州成都扬州抚顺昆明杭州桂林武汉池州沈阳泸州洛阳深圳温州湘潭漯河烟台石家庄福州芒廷维尤芝加哥西宁西安西雅图诺沃克贵阳运城邯郸郑州重庆长沙雷德蒙德青岛鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article views(340) PDF downloads(38) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return