• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 57 Issue 1
Feb.  2022
Turn off MathJax
Article Contents
WANG Qilong, WANG Guohai, CHEN Xiangrong, YU Jingzhe. Thermo-Electric Coupling Simulation for 10 kV AC XLPE Cable in DC Operation[J]. Journal of Southwest Jiaotong University, 2022, 57(1): 46-54. doi: 10.3969/j.issn.0258-2724.20200111
Citation: WANG Qilong, WANG Guohai, CHEN Xiangrong, YU Jingzhe. Thermo-Electric Coupling Simulation for 10 kV AC XLPE Cable in DC Operation[J]. Journal of Southwest Jiaotong University, 2022, 57(1): 46-54. doi: 10.3969/j.issn.0258-2724.20200111

Thermo-Electric Coupling Simulation for 10 kV AC XLPE Cable in DC Operation

doi: 10.3969/j.issn.0258-2724.20200111
  • Received Date: 05 Feb 2021
  • Rev Recd Date: 22 Jun 2021
  • Available Online: 07 Sep 2021
  • Publish Date: 07 Sep 2021
  • To study the DC operation parameters of the 10 kV AC cable in different laying modes and DC operation topologies, according to the example of the three-core cross-linked polyethylene (XLPE) cable widely used in 10 kV AC distribution network, the temperature field, flow field and electric field coupling simulation models are established through finite element simulation software. The temperature field, the flow field, the steady electric field and the transient electric field are analyzed respectively, in the cases of the cable laid in the soil, pipeline and trench (three laying modes) and operating in the bipole, monopole and triple (three-wire bipole structure-high voltage direct current, TWBS-HVDC) DC operation modes (three DC operation topologies). The results show that for the same laying mode, the TWBS-HVDC has the highest DC ampacity, while the monopole mode has the lowest DC ampacity. The DC voltage levels of the 10 kV AC cable in the three laying modes and three DC operation topologies are 10 kV and leave a certain voltage margin. The cable in the trench and monopole mode has the highest maximum DC transmission power, i.e., 13.2 MW, whereas the cable in the pipeline and bipole mode has the lowest maximum DC transmission power i.e., 8.7 MW. The maximum transmission power of the AC cable will have a significant increase after the cable is converted into DC operation.

     

  • loading
  • [1]
    JI Yirun, YUAN Zhichang, ZHAO Jianfeng, et al. Overall control scheme for VSC-based medium-voltage DC power distribution networks[J]. IET Generation Transmission & Distribution, 2018, 12(6): 1438-1445.
    [2]
    LIU Ying, CAO Xiaolong, Fu Mingli. The upgrading renovation of an existing XLPE cable circuit by conversion of AC line to DC operation[J]. IEEE Transactions on Power Delivery, 2017, 32(3): 1321-1328. doi: 10.1109/TPWRD.2015.2496178
    [3]
    YU J, SMITH K, URIZARBARRENA M, et al. Initial designs for the ANGLE DC project; converting existing AC cable and overhead line into DC operation[C]//13th IET International Conference on AC and DC Power Transmission. Manchester: Institution of Engineering and Technology, 2017: 1-6.
    [4]
    NOVAK B, KOLLER L. Current distribution and losses of grouped underground cables[J]. IEEE Transactions on Power Delivery, 2011, 26(3): 1514-1521. doi: 10.1109/TPWRD.2011.2104980
    [5]
    梁永春. 高压电力电缆温度场和载流量评估研究动态[J]. 高电压技术,2016,42(4): 1142-1150.

    LIANG Yongchun. Technological development in evaluating the temperature and ampacity of power cables[J]. High Voltage Engineering, 2016, 42(4): 1142-1150.
    [6]
    刘英,肖阳,刘松华. 隧道内电缆集群敷设对载流量的影响研究[J]. 高压电器,2019,55(8): 123-130.

    LIU Ying, XIAO Yang, LIU Songhua. Influence of cluster laying on permitted current rating of power cables in tunnels[J]. High Voltage Apparatus, 2019, 55(8): 123-130.
    [7]
    郑文坚,牛海清,宋廷汉,等. 基于热场仿真及改进粒子群算法的电缆群负荷优化方法[J]. 高电压技术,2019,45(6): 2010-2016.

    ZHENG Wenjian, NIU Haiqing, SONG Tinghan, et al. Load optimization method of cluster power cables based on thermal field simulation and modified particle swarm algorithm[J]. High Voltage Engineering, 2019, 45(6): 2010-2016.
    [8]
    胡列翔,欧阳本红,刘宗喜,等. 交流500 kV海底电缆登陆段载流能力提升[J]. 高电压技术,2019,45(11): 3421-3428.

    HU Liexiang, OUYANG Benhong, LIU Zongxi, et al. Improvement in current carrying capacity of landing section of AC 500 kV submarine cable[J]. High Voltage Engineering, 2019, 45(11): 3421-3428.
    [9]
    刘士利,李宁,蔡国伟,等. 66kV交流交联聚乙烯电缆线路改为直流运行的直流载流量[J]. 高电压技术,2017,43(5): 1664-1669.

    LIU Shili, LI Ning, CAI Guowei, et al. DC ampacity of 66 kV AC XLPE cable line transformed into DC operation[J]. High Voltage Engineering, 2017, 43(5): 1664-1669.
    [10]
    胡列翔,许烽,裘鹏,等. 交流XLPE电缆在两种直流运行方式下的热电耦合仿真[J]. 高电压技术,2019,45(7): 2307-2313.

    HU Liexiang, XU Feng, QIU Peng, et al. Thermo-electric coupling simulation for AC XLPE cable in two DC operation modes[J]. High Voltage Engineering, 2019, 45(7): 2307-2313.
    [11]
    于竞哲,苏宜靖,周浩,等. 10 kV交流XLPE电缆改为直流运行的温度场和电场仿真分析[J]. 高电压技术,2017,43(11): 3653-3660.

    YU Jingzhe, SU Yijing, ZHOU Hao, et al. Simulation analysis of temperature field and electric field for 10 kV AC XLPE cable in DC operation[J]. High Voltage Engineering, 2017, 43(11): 3653-3660.
    [12]
    陈向荣,王启隆,于竞哲,等. 10 kV交流XLPE电缆在不同直流拓扑结构和敷设方式下的直流载流量仿真研究[J]. 高电压技术,2021,47(11): 4044-4054. doi: 10.13336/j.1003-6520.hve.20201393

    CHEN Xiangrong, WANG Qilong, YU Jingzhe, et al. Simulation research on DC ampacity of 10 kV AC XLPE cable Under different DC operation topologies and laying modes[J]. High Voltage Engineering, 2021, 47(11): 4044-4054. doi: 10.13336/j.1003-6520.hve.20201393
    [13]
    SHEKHAR A, KONTOS E, RAMÍREZ-ELIZONDO L, et al. Grid capacity and efficiency enhancement by operating medium voltage AC cables as DC links with modular multilevel converters[J]. International Journal of Electrical Power and Energy Systems, 2017, 93: 479-493.
    [14]
    CHEN Xiangrong, YU Jingzhe, ZHOU Hao. Thermo-electric field analysis of AC XLPE cable in monopole,bipole and tripole DC operation modes[J]. IET Generation Transmission & Distribution, 2019, 13(14): 2959-2966.
    [15]
    徐政,许烽. 输电线路交改直的关键技术研究[J]. 高电压技术,2016,42(1): 1-10.

    XU Zheng, XU Feng. Research on key technologies of AC-to-DC transmission lines conversion[J]. High Voltage Engineering, 2016, 42(1): 1-10.
    [16]
    YU Jingzhe, CHEN Xiangrong, MENG Fanbo, et al. Numerical analysis of thermo-electric field for AC XLPE cables with different service times in DC operation based on conduction current measurement[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2020, 27(3): 900-908. doi: 10.1109/TDEI.2019.008502
    [17]
    刘子玉. 电气绝缘结构设计原理[M]. 上册. 北京: 机械工业出版社, 1981: 303-305.
    [18]
    梁永春,赵静,闫彩红. 沟槽电缆温度场和载流量的数值计算[J]. 高电压技术,2012,38(11): 3048-3053.

    LIANG Yongchun, ZHAO Jing, YAN Caihong. Numerical calculation of temperature field and ampacity of power cables in channel[J]. High Voltage Engineering, 2012, 38(11): 3048-3053.
    [19]
    ÖHMAN C. Emittansmätningar med AGEMA E-Box[R]. [S.l.]: AGEMA, 1999.
    [20]
    王雅妮,张洪亮,吴建东,等. 不同敷设方式下高压直流电缆温度场与电场仿真计算研究[J]. 绝缘材料,2017,50(7): 71-78.

    WANG Yani, ZHANG Hongliang, WU Jiandong, et al. Simulation and calculation of temperature field and electric field distribution of HVDC cable under different laying modes[J]. Insulating Materials, 2017, 50(7): 71-78.
    [21]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 中低压直流配电电压导则: GB/T 35727—2017[S]. 北京: 中国标准出版社, 2017.
    [22]
    朱永华, 吴长顺, 杨娟娟, 等. 额定电压500 kV及以下直流输电用挤包绝缘电力电缆系统技术规范: TICW 7.1—2012[S]. 上海: 国家电线电缆质量监督检验中心, 2012.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article views(407) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return