Citation: | ZHOU Ning, ZHI Xingshuai, ZHANG Jing, ZHENG Wei, LUO Chaoji, ZHANG Weihua. Friction and Wear Performance of Pantograph-Catenary System in Electrified Railways: State of the Art[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 990-1005, 1022. doi: 10.3969/j.issn.0258-2724.20220053 |
For pantograph-catenary contact pairs in electrified railways operating in normal and abnormal states, the friction and wear performance of pantograph strip differentiates in a wear cycle, highlighted by differences in wear rate and wear profile. When abnormal wear occurs, the wear rate of pantograph strip will have a multifold increase or even dozens of times increase, but the wear profile acts differently, revealing partial eccentric wear, wavy wear, and penetrating wear. The similarities and differences in current-carrying friction and wear platforms are summarized for pantograph-catenary systems, as well as the advantages and disadvantages of contact and non-contact detection methods. The influential factors and evolution law are analyzed in view of the structure and parameters, train operation parameters, current-carrying parameters and external environment of pantograph-catenary system. Following above work, the state of the art of pantograph-catenary wear models, including mechanism analysis model and data fitting model, are analyzed extensively, and the prospective direction and development trend are put forward, such as, the equivalent simulation of a pantograph-catenary friction pair in real service under laboratory conditions, online high-precision detection of pantograph-catenary wear performance, simulation and optimization of pantograph-catenary wear performance in complex climatic conditions and multi-physical field coupling, pantograph-catenary wear prediction using big data and intelligent algorithms, intelligent operation and maintenance strategies, and capability maintenance in the whole life cycle.
[1] |
张卫华. 高速列车耦合大系统动力学理论与实践[M]. 北京: 科学出版社,2013.
|
[2] |
吴积钦. 受电弓与接触网系统[M]. 成都:西南交通大学出版社,2010.
|
[3] |
宋冬利,江亚男,张卫华. 滑板磨耗对受电弓系统服役性能的影响研究[J]. 西南交通大学学报,2017,52(3): 450-457.
SONG Dongli, JIANG Yanan, ZHANG Weihua. Effects of contact strips wear on service performance of pantograph system[J]. Journal of Southwest Jiaotong University, 2017, 52(3): 450-457.
|
[4] |
NAGASAWA H, KATO K. Wear mechanism of copper alloy wire sliding against iron-base strip under electric current[J]. Wear, 1998, 216(2): 179-183. doi: 10.1016/S0043-1648(97)00162-2
|
[5] |
KUBO S, KATO K. Effect of arc discharge on the wear rate and wear mode transition of a copper-impregnated metallized carbon contact strip sliding against a copper disk[J]. Tribology International, 1999, 32(7): 367-378. doi: 10.1016/S0301-679X(99)00062-6
|
[6] |
SENOUCI A, ZAIDI H, FRENE J, et al. Damage of surfaces in sliding electrical contact copper/steel[J]. Applied Surface Science, 1999, 144/145: 287-291. doi: 10.1016/S0169-4332(98)00915-5
|
[7] |
SENOUCI A, FRENE J, ZAIDI H. Wear mechanism in graphite–copper electrical sliding contact[J]. Wear, 1999, 225/226/227/228/229: 949-953.
|
[8] |
HE D H, MANORY R R, GRADY N. Wear of railway contact wires against current collector materials[J]. Wear, 1998, 215(1/2): 146-155.
|
[9] |
HE D H, MANORY R. A novel electrical contact material with improved self-lubrication for railway current collectors[J]. Wear, 2001, 249(7): 626-636. doi: 10.1016/S0043-1648(01)00700-1
|
[10] |
林修洲,朱旻昊,陈光雄,等. 高速电气化铁路弓/网系统的摩擦磨损研究进展[J]. 润滑与密封,2007,32(2): 180-183.
LIN Xiuzhou, ZHU Minhao, CHEN Guangxiong, et al. Research progresses on friction and wear of pantograph/contact wire system in high speed electrified railway[J]. Lubrication Engineering, 2007, 32(2): 180-183.
|
[11] |
郭凤仪,赵汝彬,陈忠华,等. 滑动电接触磨耗测控系统的研究[J]. 计算机测量与控制,2010,18(3): 508-511.
GUO Fengyi, ZHAO Rubin, CHEN Zhonghua, et al. Investigation on electric sliding contact wear measurement and control system[J]. Computer Measurement & Control, 2010, 18(3): 508-511.
|
[12] |
姜国强,郭凤仪,王智勇,等. 高性能滑动电接触实验机的设计与研制[J]. 机械设计,2010,27(1): 31-34.
JIANG Guoqiang, GUO Fengyi, WANG Zhiyong, et al. Design and development of high performance sliding electrical contact testing machine[J]. Journal of Machine Design, 2010, 27(1): 31-34.
|
[13] |
王亚春,陈立明,杨才智. 高速铁路弓网关系模拟试验研究[J]. 中国铁道科学,2018,39(3): 79-85.
WANG Yachun, CHEN Liming, YANG Caizhi. Simulation test study on pantograph-catenary relation of high speed railway[J]. China Railway Science, 2018, 39(3): 79-85.
|
[14] |
许思思. 弓网系统电弧机理试验与研究[D]. 成都: 西南交通大学,2014.
|
[15] |
BUCCA G, COLLINA A. A procedure for the wear prediction of collector strip and contact wire in pantograph–catenary system[J]. Wear, 2009, 266(1/2): 46-59.
|
[16] |
曾攀,王俊玮,邓久强,等. 基于计算机视觉的受电弓滑板磨耗图像的识别[J]. 无线互联科技,2016(7): 104-106.
ZENG Pan, WANG Junwei, DENG Jiuqiang, et al. Image recognition of slide abrasion for locomotive pantograph[J]. Wireless Internet Technology, 2016(7): 104-106.
|
[17] |
LU S F, LIU Z, LI D, et al. Automatic wear measurement of pantograph slider based on multiview analysis[J]. IEEE Transactions on Industrial Informatics, 2021, 17(5): 3111-3121. doi: 10.1109/TII.2020.2997724
|
[18] |
KARADUMAN G, AKIN E. A deep learning based method for detecting of wear on the current collector strips’ surfaces of the pantograph in railways[J]. IEEE Access, 2020, 8: 183799-183812. doi: 10.1109/ACCESS.2020.3029555
|
[19] |
闵泳. 新型电力机车受电弓碳基复合材料滑板研究[D]. 大连: 大连交通大学,2005.
|
[20] |
冀盛亚,孙乐民,上官宝,等. 受电弓滑板材料的研究现状及展望[J]. 热加工工艺,2009,38(6): 80-83.
JI Shengya, SUN Lemin, SHANGGUAN Bao, et al. Research status and prospects of pantograph slide material[J]. Hot Working Technology, 2009, 38(6): 80-83.
|
[21] |
张晓娟,孙乐民. 受电弓滑板和接触网导线材料的现状及展望[J]. 河南科技大学学报(自然科学版),2006,27(6): 4-7,105.
ZHANG Xiaojuan, SUN Lemin. Status and expectation of pantograph slide and contact wire[J]. Journal of Henan University of Science and Technology (Natural Science), 2006, 27(6): 4-7,105.
|
[22] |
中华人民共和国铁道部. 电力机车受电弓滑板 粉末冶金滑板:TB/T 1842.1—2002[S]. 北京:中国铁道出版社,2002.
|
[23] |
中华人民共和国铁道部. 电力机车受电弓滑板 浸金属碳滑板:TB/T 1842.2—2002[S]. 北京:中国铁道出版社,2002.
|
[24] |
中华人民共和国铁道部. 电力机车受电弓滑板 第3部分:碳滑板:TB/T 1842.3—2008[S]. 北京:中国铁道出版社,2008.
|
[25] |
KANG S. A study of friction and wear characteristics of copper- and iron-based sintered materials[J]. Wear, 1993, 162/163/164: 1123-1128.
|
[26] |
杨连威,姚广春,陆阳. 新型铜-碳复合受电弓滑板的制备[J]. 过程工程学报,2005,5(4): 460-463.
YANG Lianwei, YAO Guangchun, LU Yang. Research on new copper-carbon composite pantograph slide plate[J]. The Chinese Journal of Process Engineering, 2005, 5(4): 460-463.
|
[27] |
刘军,严红革,陈刚,等. 铜基复合材料受电弓滑板摩擦磨损及电阻率的研究[J]. 矿冶工程,2007,27(2): 71-74.
LIU Jun, YAN Hongge, CHEN Gang, et al. Frictional wear and resistivity of copper matrix composites pantograph slider[J]. Mining and Metallurgical Engineering, 2007, 27(2): 71-74.
|
[28] |
罗骥,曹慧钦,贾步超,等. 新型铜基受电弓滑板材料的制备与性能[J]. 复合材料学报,2012,29(2): 103-108.
LUO Ji, CAO Huiqin, JIA Buchao, et al. Preparation and properties of the new type copper matrix pantograph slider[J]. Acta Materiae Compositae Sinica, 2012, 29(2): 103-108.
|
[29] |
余亚岚,袁楠,江丹露,等. 镍与石墨含量对新型铜基粉末冶金受电弓滑板材料性能的影响[J]. 粉末冶金材料科学与工程,2015,20(3): 419-424.
YU Yalan, YUAN Nan, JIANG Danlu, et al. Effects of nickel and graphite content on new copper matrix P/M materials for pantograph slider[J]. Materials Science and Engineering of Powder Metallurgy, 2015, 20(3): 419-424.
|
[30] |
KUBOTA Y. Relationship between wear profile of pantograph contact strip and arc discharge energy distribution[C]//2018 IEEE Holm Conference on Electrical Contacts. Albuquerque: IEEE, 2018: 150-154.
|
[31] |
HUANG J X, WANG M, LI Y C, et al. Effect of flake graphite content on wear between behavior between P/M copper-based pantograph slide and contact wire[J]. Materials Research Express, 2020, 7(7): 076510.1-076510.14. doi: 10.1088/2053-1591/aba3e3
|
[32] |
翟洪祥,汪长安. Ti3SiC2材料在受电弓滑板中的应用研究[J]. 机车电传动,2003(增1):43-45.
ZHAI Hongxiang, WANG Chang’an. Study on the application of Ti3SiC2 material in pantograph slide plate[J]. Electric Drive for Locomotives,2003(S1):43-45.
|
[33] |
刘新. Ti3SiC2、Ti3AlC2陶瓷的非载流和载流摩擦学行为研究[D]. 北京: 北京交通大学,2007.
|
[34] |
黄振莺. 高速列车受电弓滑板用TiSiC系材料的制备与性能研究[D]. 北京: 北京交通大学,2008.
|
[35] |
ZHAO J, PENG Y T, ZHOU Q G, et al. The current-carrying tribological properties of Cu/graphene composites[J]. Journal of Tribology, 2021, 143(10): 102101.1-102101.9. doi: 10.1115/1.4049696
|
[36] |
柴昌盛,徐立新,韦强,等. 铜对碳纤维/酚醛树脂受电弓滑板材料的性能影响[J]. 广州化工,2010,38(12): 102-104.
CHAI Changsheng, XU Lixin, WEI Qiang, et al. Effect of Cu mass fraction on properties of carbon-fiber fabric/phenolic resin pantograph slider composites[J]. Guangzhou Chemical Industry, 2010, 38(12): 102-104.
|
[37] |
袁华. 碳纤维增强受电弓滑板的制备与性能及摩擦磨损机理的研究[D]. 济南: 山东大学,2013.
|
[38] |
余先涛,莫易敏. 激光表面熔覆在机车受电弓滑板材料中的应用[J]. 武汉理工大学学报(信息与管理工程版),2005,27(4): 146-149.
YU Xiantao, MO Yimin. Application of laser cladding in pantograph slide plates of electric locomotives[J]. Journal of Wuhan University of Technology (Information & Management Engineering), 2005, 27(4): 146-149.
|
[39] |
陈鹏威. 激光直接金属沉积石墨—铜功能梯度复合材料应力场数值模拟[D]. 南昌: 华东交通大学,2015.
|
[40] |
周颖. 激光沉积制备石墨/Cu复合材料的性能研究[D]. 南昌: 华东交通大学,2018.
|
[41] |
WANG P, WEI F C, ZHAO Z W, et al. Effect of heat treatment temperature on mechanical and tribological properties of copper impregnated carbon/carbon composite[J]. Tribology International, 2021,164: 1-9. doi: 10.1016/j.triboint.2021.107209
|
[42] |
张军伟,杨正海,孙乐民,等. 梯度铜碳复合材料的载流摩擦磨损性能[J]. 材料热处理学报,2020,41(7): 33-40.
ZHANG Junwei, YANG Zhenghai, SUN Lemin, et al. Current-carrying friction and wear properties of gradient copper-carbon composites[J]. Transactions of Materials and Heat Treatment, 2020, 41(7): 33-40.
|
[43] |
杨广英,徐超,杨才智,等. 铜锡合金接触导线高速磨耗性能试验研究[J]. 铁道技术监督,2016,44(11): 31-33.
YANG Guangying, XU Chao, YANG Caizhi, et al. Experimental study on high-speed wear performance of copper-tin alloy contact wire[J]. Railway Quality Control, 2016, 44(11): 31-33.
|
[44] |
徐超,潘利科,杨才智,等. 400 km/h高速列车受电弓滑板与接触线载流摩擦磨损研究[J]. 电气化铁道,2018,29(增1):29-31,35.
XU Chao, PAN Like, YANG Caizhi, et al. Study on current-carrying friction and wear between pantograph slide plate and contact wire of 400 km/h high-speed train[J]. Electric Railway,2018,29(S1):29-31,35.
|
[45] |
HU Y, CHEN G X, ZHANG S D, et al. Comparative investigation into the friction and wear behaviours of a Cu–Ag contact wire/carbon strip and a pure copper contact wire/carbon strip at high speeds[J]. Wear, 2017, 376/377: 1552-1557. doi: 10.1016/j.wear.2016.12.041
|
[46] |
WANG R Y, ZHANG Z G, ZHONG J L. Analysis and research on current-carrying friction and wear of high-speed train pantograph slide and contact wire based on computer simulation analysis[J]. Journal of Physics: Conference Series, 2020, 1648(3): 1-6. doi: 10.1088/1742-6596/1648/3/032031
|
[47] |
黄之元,陈光雄,夏晨光. 组装式滑板对地铁接触线犁削磨损的影响[J]. 润滑与密封,2011,35(1): 33-35,78.
HUANG Zhiyuan, CHEN Guangxiong, XIA Chenguang. Effect of assembled strip on plough wear of metro contact wire[J]. Lubrication Engineering, 2011, 35(1): 33-35,78.
|
[48] |
黄之元,陈光雄,夏晨光. 组装式滑板对地铁接触线犁削磨损的影响[J]. 润滑与密封,2021,46(2): 24-30.
HUANG Zhiyuan, CHEN Guangxiong, XIA Chenguang. Effect of assembled strip on plough wear of metro contact wire[J]. Lubrication Engineering, 2021, 46(2): 24-30.
|
[49] |
丁涛,何宏高,陈光雄,等. 弹性条件下浸金属碳/不锈钢载流摩擦磨损性能[J]. 西南交通大学学报,2009,44(4): 558-563.
DING Tao, HE Honggao, CHEN Guangxiong, et al. Friction and wear behavior of copper-impregnated metalized carbon strip sliding against stainless steel with electrical current under elastic condition[J]. Journal of Southwest Jiaotong University, 2009, 44(4): 558-563.
|
[50] |
唐志强,朱佳栋. 城市轨道交通架空刚性悬挂接触网弓网磨耗及改进措施[J]. 城市轨道交通研究,2021,24(增1):108-112.
TANG Zhiqiang, ZHU Jiadong. Pantograph and catenary wear of overhead rigid suspension catenary in urban rail transit and its improvement measures[J]. Urban Mass Transit,2021,24(S1):108-112.
|
[51] |
王剑. 地铁刚性接触悬挂弓网磨耗问题研究[J]. 都市快轨交通,2012,25(4): 59-62, 66.
WANG Jian. Discussion on pantograph-catenary abrasion of metro rigid overhead catenary system[J]. Urban Rapid Rail Transit, 2012, 25(4): 59-62, 66.
|
[52] |
武云龙,付文明,黄海,等. 拉出值对碳滑板/铜银合金接触线载流磨损性能的影响[J]. 润滑与密封,2017,42(10): 57-61.
WU Yunlong, FU Wenming, HUANG Hai, et al. Effect of the staggering on the wear performance of carbon strip/Cu-Ag alloy contact wire with electric current[J]. Lubrication Engineering, 2017, 42(10): 57-61.
|
[53] |
谭冬华. 架空刚性悬挂弓网磨耗异常的分析与解决办法[J]. 电气化铁道,2007,18(1): 29-32.
TAN Donghua. Analysis and counter measures of abnormal wear between catenary and pantograph under rigid suspension of OCS[J]. Electric Railway, 2007, 18(1): 29-32.
|
[54] |
谢风华. 单轨交通刚性接触网不均匀磨耗分析及其对策[J]. 城市轨道交通研究,2011,14(8): 73-75.
XIE Fenghua. Analysis and countermeasures of the uneven wear for monorail rigid centenary[J]. Urban Mass Transit, 2011, 14(8): 73-75.
|
[55] |
YANG H J, HU B, LIU Y H, et al. Influence of reciprocating distance on the delamination wear of the carbon strip in pantograph–catenary system at high sliding-speed with strong electrical current[J]. Engineering Failure Analysis, 2019, 104: 887-897. doi: 10.1016/j.engfailanal.2019.06.060
|
[56] |
胡艳,黄盼盼,马然. 滑动速度对碳滑板载流摩擦磨损性能的影响[J]. 实验技术与管理,2020,37(1): 87-90.
HU Yan, HUANG Panpan, MA Ran. Effect of sliding speed on current carrying friction and wear properties of carbon sliding plate[J]. Experimental Technology and Management, 2020, 37(1): 87-90.
|
[57] |
李克敏,上官宝,杜三明,等. 摩擦速度和电流密度对铜基复合材料载流摩擦磨损性能的影响[J]. 机械工程材料,2015,39(3): 22-27,31.
LI Kemin, SHANGGUAN Bao, DU Sanming, et al. Effects of friction velocity and current density on current-carrying friction and wear properties of copper matrix composites[J]. Materials for Mechanical Engineering, 2015, 39(3): 22-27,31.
|
[58] |
杨正海,上官宝,孙乐民,等. 相对滑动速度对铜-石墨复合材料载流摩擦性能的影响[J]. 河南科技大学学报(自然科学版),2021,42(1): 1-6,117.
YANG Zhenghai, SHANGGUAN Bao, SUN Lemin, et al. Effect of relative slipping speed on current-carrying friction performance of copper graphite composites[J]. Journal of Henan University of Science and Technology (Natural Science), 2021, 42(1): 1-6,117.
|
[59] |
YANG H J, CHEN G X, GAO G Q , et al. Experimental research on the friction and wear properties of a contact strip of a pantograph- catenary system at the sliding speed of 350 km/h with electric current[J]. Wear, 2015, 332- 333: 949- 955.
|
[60] |
陈忠华,王铁军,回立川,等. 弓网系统滑动电接触最优压力载荷的确定[J]. 电工技术学报,2013,28(6): 86-92.
CHEN Zhonghua, WANG Tiejun, HUI Lichuan, et al. Determination of the optimal contact load in pantograph-catenary system[J]. Transactions of China Electrotechnical Society, 2013, 28(6):86-92.
|
[61] |
陈忠华,孙国军,回立川,等. 波动压力载荷下弓网滑动电接触特性研究[J]. 高压电器,2018,54(12): 82-88.
CHEN Zhonghua, SUN Guojun, HUI Lichuan, et al. Study on characteristics of sliding electrical contact of pantograph-catenary under fluctuating pressure load[J]. High Voltage Apparatus, 2018, 54(12): 82-88.
|
[62] |
李斌,隋意,王智勇,等. 弓网系统滑板磨损特性分析与剩余寿命预测[J]. 辽宁工程技术大学学报(自然科学版),2021,40(5): 454-459.
LI Bin, SUI Yi, WANG Zhiyong, et al. Wear characteristics analysis and residual life prediction of pantograph-catenary system slide plate[J]. Journal of Liaoning Technical University (Natural Science), 2021, 40(5): 454-459.
|
[63] |
胡艳,董丙杰,周培勇,等. 滑板磨损量和弓网放电能量预测模型的研究及应用[J]. 润滑与密封,2015,40(8): 66-70.
HU Yan, DONG Bingjie, ZHOU Peiyong, et al. Study and application of the prediction formula of arc discharge energy and wear volume of pantograph-OCS system[J]. Lubrication Engineering, 2015, 40(8): 66-70.
|
[64] |
胡道春,孙乐民,上官宝,等. 电弧能量对浸金属碳滑板材料载流摩擦磨损性能的影响[J]. 摩擦学学报,2009,29(1): 36-42.
HU Daochun, SUN Lemin, SHANGGUAN Bao, et al. Effects of arc discharge on friction and wear properties of metal-impregnated carbon strip sliding against Cu trolley under electric current[J]. Tribology, 2009, 29(1): 36-42.
|
[65] |
MEI G M. Tribological performance of rigid overhead lines against pantograph sliders under DC passage[J]. Tribology International, 2020, 151: 106538.1-106538.9. doi: 10.1016/j.triboint.2020.106538
|
[66] |
KUBO S, KATO K. Effect of arc discharge on wear rate of Cu-impregnated carbon strip in unlubricated sliding against Cu trolley under electric current[J]. Wear, 1998, 216(2): 172-178. doi: 10.1016/S0043-1648(97)00184-1
|
[67] |
CHEN G X, YANG H J, ZHANG W H, et al. Experimental study on arc ablation occurring in a contact strip rubbing against a contact wire with electrical current[J]. Tribology International, 2013, 61: 88-94. doi: 10.1016/j.triboint.2012.11.020
|
[68] |
王英. 弓网电接触热流和电流传导及影响规律研究[D]. 成都:西南交通大学,2016.
|
[69] |
BOUCHOUCHA A, KADIRI E K, ROBERT F, et al. Metals transfer and oxidation of copper—steel surfaces in electrical sliding contact[J]. Surface and Coatings Technology, 1995, 76/77: 521-527.
|
[70] |
BOUCHOUCHA A, CHEKROUD S, PAULMIER D. Influence of the electrical sliding speed on friction and wear processes in an electrical contact copper–stainless steel[J]. Applied Surface Science, 2004, 223(4): 330-342. doi: 10.1016/j.apsusc.2003.09.018
|
[71] |
卜俊,丁涛,陈光雄. 温度对受电弓滑板材料磨损的影响[J]. 润滑与密封,2010,35(5): 22-25,105.
BU Jun, DING Tao, CHEN Guangxiong. Effect of temperature on the wear behaviour of a pantograph strip material[J]. Lubrication Engineering, 2010, 35(5): 22-25,105.
|
[72] |
MEI G M, FU W M, CHEN G X, et al. Effect of high-density current on the wear of carbon sliders against Cu–Ag wires[J]. Wear, 2020, 452/453: 203275.1-203275.7. doi: 10.1016/j.wear.2020.203275
|
[73] |
黄海,武云龙,闫硕,等. 电压对碳滑板磨损性能和温升的影响[J]. 润滑与密封,2017,42(8): 25-30.
HUANG Hai, WU Yunlong, YAN Shuo, et al. Effect of voltage on wear behavior and temperature rise of a pantograph carbon strip[J]. Lubrication Engineering, 2017, 42(8): 25-30.
|
[74] |
付文明,武云龙,刘力,等. 大电流对碳滑块/铜银合金接触线载流摩擦磨损性能的影响[J]. 润滑与密封,2017,42(9): 52-56.
FU Wenming, WU Yunlong, LIU Li, et al. Effect of high-current on friction and wear behavior of carbon strip/Cu-Ag alloy contact wire with electric current[J]. Lubrication Engineering, 2017, 42(9): 52-56.
|
[75] |
DING T, CHEN G X, LI Y M, et al. Friction and wear behavior of pantograph strips sliding against copper contact wire with electric current[J]. AASRI Procedia, 2012, 2: 288-292. doi: 10.1016/j.aasri.2012.09.048
|
[76] |
LU C T, BRYANT M D. Thermoelastic evolution of contact area and mound temperatures in carbon graphite electrical contact brushes[J]. Wear, 1994, 174: 137-146. doi: 10.1016/0043-1648(94)90095-7
|
[77] |
TU C J, CHEN Z H, CHEN D, et al. Tribhological behavior and wear mechanism of resin-matrix contact strip against copper with electrical current[J]. Transactions of Nonferrous Metals society of China, 2008, 18: 1157-1163. doi: 10.1016/S1003-6326(08)60198-3
|
[78] |
DING T, CHEN G X, ZHU M H, et al. Influence of the spring stiffness on friction and wear behaviours of stainless steel/copper impregnated metallized carbon couple with electrical current[J]. Wear, 2009, 267: 1080-1086. doi: 10.1016/j.wear.2008.12.098
|
[79] |
丁涛,王鑫,陈光雄,等. 有无电流条件下温度对碳/铜摩擦副摩擦磨损性能的影响[J]. 中国机械工程,2010(7): 843-847.
Ding Tao, Wang Xin, et al. Effect of Temperature on Friction and Wear Behaviors of Carbon/Copperwith and without Electric Current[J]. China Mechanical Engineering,2010(7):843-847.
|
[80] |
DING T, HE Q D, YANG Y, et al. High temperature characteristics of a carbon strip sliding against copper with electrical current[J]. Materials Performance and Characterization, 2018, 7(1): 101-112. doi: 10.1520/MPC20170087
|
[81] |
丁涛,王鑫,陈光雄,等. 120~170 km/h条件下碳滑板/铜接触线摩擦磨损性能试验研究[J]. 机械工程学报,2010,46(16): 36-40. doi: 10.3901/JME.2010.16.036
DING Tao, WANG Xin, CHEN Guangxiong, et al. Experimental study on friction and wear behavior of carbon strip/copper contact wire at speeds of 120~170 km/h[J]. Journal of Mechanical Engineering, 2010, 46(16): 36-40. doi: 10.3901/JME.2010.16.036
|
[82] |
张会杰,孙乐民,张永振,等. 环境气氛对C/C复合材料载流摩擦学性能的影响[J]. 摩擦学学报,2015,35(2): 236-241.
ZHANG Huijie, SUN Lemin, ZHANG Yongzhen, et al. The influence of environmental atmosphere on the tribological performance of C/C composites under electrical current[J]. Tribology, 2015, 35(2): 236-241.
|
[83] |
DEROSA S, NÅVIK P, COLLINA A, et al. Contact point lateral speed effects on contact strip wear in pantograph–catenary interaction for railway operations under 15 kV 16.67 Hz AC systems[J]. Wear, 2021, 486/487: 204103.1-204103.9. doi: 10.1016/j.wear.2021.204103
|
[84] |
卿涛,邵天敏,温诗铸. 相对湿度对材料表面粘附力影响的研究[J]. 摩擦学学报,2006,26(4): 295-299.
QING Tao, SHAO Tianmin, WEN Shizhu. Effects of relative humidity on surface adhesion[J]. Tribology, 2006, 26(4): 295-299.
|
[85] |
卿涛,邵天敏,温诗铸. 载荷和相对湿度对微摩擦力的影响[J]. 润滑与密封,2006,31(10): 4-7,32.
QING Tao, SHAO Tianmin, WEN Shizhu. Effects of load and relative humidity on micro-friction[J]. Lubrication Engineering, 2006, 31(10): 4-7,32.
|
[86] |
王蒙,郭凤仪,王智勇,等. 潮湿条件下滑板磨耗特性研究[J]. 高压电器,2018,54(7): 292-296.
WANG Meng, GUO Fengyi, WANG Zhiyong, et al. Study on the wear characteristics of slide plate under wet conditions[J]. High Voltage Apparatus, 2018, 54(7): 292-296.
|
[87] |
孙逸翔,宋晨飞,李家伟,等. 转速对水环境下纯铜滚动载流摩擦损伤的影响[J]. 摩擦学学报,2021,41(3): 365-372.
SUN Yixiang, SONG Chenfei, LI Jiawei, et al. Effect of rotating speed on surface damage of rolling current-carrying pairs in a water environment[J]. Tribology, 2021, 41(3): 365-372.
|
[88] |
孙逸翔,岳洋,宋晨飞,等. 相对湿度对铜材料载流磨损的影响[J]. 河南科技大学学报(自然科学版),2018,39(1): 1-4,117.
SUN Yixiang, YUE Yang, SONG Chenfei, et al. Effect of relative humidity on triboelectric wear of copper[J]. Journal of Henan University of Science and Technology (Natural Science), 2018, 39(1): 1-4,117.
|
[89] |
李含欣,季德惠,沈明学,等. 环境湿度对碳/铜滑动接触副载流摩擦学行为的影响[J]. 摩擦学学报,2022,42(4): 709-718.
LI Hanxin, JI Dehui, SHEN Mingxue, et al. Effect of environmental humidity on tribological behavior of carbon/copper current-carrying sliding contact pairs[J]. Tribology, 2022, 42(4): 709-718.
|
[90] |
DEROSA S, NÅVIK P, COLLINA A, et al. A heuristic wear model for the contact strip and contact wire in pantograph–Catenary interaction for railway operations under 15 kV 16.67 Hz AC systems[J]. Wear, 2020, 456/457: 203401.1-20340.8. doi: 10.1016/j.wear.2020.203401
|
[91] |
ASHBY M F, LIM S C. Wear-mechanism maps[J]. Scripta Metallurgica et Materialia,1990,24(5):805-810.
|
[92] |
WEI X K, MENG H F, HE J H, et al. Wear analysis and prediction of rigid catenary contact wire and pantograph strip for railway system[J]. Wear, 2020, 442/443: 203118.1-203118.15. doi: 10.1016/j.wear.2019.203118
|
[93] |
徐文文,彭建平,邱春蓉. 基于支持向量回归的地铁受电弓滑板磨耗趋势预测模型研究[J]. 铁路计算机应用,2020,29(1): 77-81.
XU Wenwen, PENG Jianping, QIU Chunrong. Prediction model of subway pantograph slide pan wear trend based on LSSVR[J]. Railway Computer Application, 2020, 29(1): 77-81.
|
[94] |
胡艳,杨红娟,董丙杰,等. 基于最小二乘法的纯碳滑板磨损量预测[J]. 铁道学报,2016,38(1): 48-53.
HU Yan, YANG Hongjuan, DONG Bingjie, et al. The prediction of the wear loss of strips based on the partial least-square regression method[J]. Journal of the China Railway Society, 2016, 38(1): 48-53.
|