• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 31 Issue 4
Jul.  2018
Turn off MathJax
Article Contents
YUAN Weina, WANG Jiaxuan. Fast Time-Varying Sparse Channel Estimation Based on Kalman Filter[J]. Journal of Southwest Jiaotong University, 2018, 53(4): 835-841. doi: 10.3969/j.issn.0258-2724.2018.04.023
Citation: YUAN Weina, WANG Jiaxuan. Fast Time-Varying Sparse Channel Estimation Based on Kalman Filter[J]. Journal of Southwest Jiaotong University, 2018, 53(4): 835-841. doi: 10.3969/j.issn.0258-2724.2018.04.023

Fast Time-Varying Sparse Channel Estimation Based on Kalman Filter

doi: 10.3969/j.issn.0258-2724.2018.04.023
  • Received Date: 11 Dec 2017
  • Publish Date: 01 Aug 2018
  • A fast time-varying sparse channel estimation method based on the Kalman filter is proposed for channel estimation of an orthogonal frequency division multiplexing communication system operating in high-speed railways and mountain areas. Based on the basic expansion model (BEM), compressed sensing (CS) was employed for the estimation of sparse delays, and a Kalman filter (KF) estimator was utilised for estimating the BEM coefficients. The channel gains were then computed easily. The simulation results show that under the same signal-to-ratio (SNR) condition, with the increase in frequency-normalised Doppler shift (FND), the MSE of the new method is superior to that of traditional methods, such as SNR is 20 dB and FND is 0.1, and a 4 dB performance improvement is achieved. Under the same Doppler shift condition, the same result is obtained as that with the increase in SNR, such as FND is 0.2 and MSE is 0.06, and a 6 dB SNR gain is achieved. These results show that the new method is more robust to variation in channel time and stronger against noise compared with traditional methods.

     

  • loading
  • WU J, FAN P. A survey on high mobility wireless communications:challenges, opportunities and solutions[J]. IEEE Access, 2016, 4(1):450-476. http://ieeexplore.ieee.org/document/7383229/
    FAN Pingzhi, ERDAL P. Guest editorial:special issue on high mobility wireless communications[J]. Journal of Modern Transportation, 2012, 20(4):197-198. doi: 10.1007/BF03325798
    周杲, 范平志, 郝莉.基于OFDM的DFT加扰矢量码分多址接入技术[J].西南交通大学学报, 2017, 52(1):148-155. doi: 10.3969/j.issn.0258-2724.2017.01.021

    ZHOU Gao, FAN Pingzhi, HAO Li. 0FDM based DFT scrambling vector code division multiple access[J]. Joumal of Southwest Jiaotong University, 2017, 52(1):148-155. doi: 10.3969/j.issn.0258-2724.2017.01.021
    ROOZBEH M, ARASH A, Compressive sensing-based pilot design for sparce channel estimation in OFDM systems[J]. IEEE Communications Letters, 2017, 21(1):4-7. doi: 10.1109/LCOMM.2016.2613086
    LEE D. MIMO OFDM channel estimation via bock stagewise orthogonal mnatching pursuit[J]. IEEE Communications Letters, 2016, 20(10):2115-2118. doi: 10.1109/LCOMM.2016.2594059
    ROOZBEH M, ARASH A. Determinitic pilot design for sparce channel estimation in MISO/multi-user OFDM systems[J]. IEEE Transactions on Wireless Communications, 2017, 16(1):129-140. doi: 10.1109/TWC.2016.2619699
    叶新荣, 朱卫平, 张爱清, 等. OFDM系统双选择性慢衰落信道的压缩感知估计[J].电子与信息学报, 2015, 37(1):169-174. http://d.old.wanfangdata.com.cn/Periodical/dzkxxk201501026

    YE Xinrong, ZHU Weiping, ZHANG Aiqing, et al. Compressed sensing based on doubly-selective slow-fading channel estimation in ofdm systems cbannel estimation[J]. Journal of electronics and information, 2015, 37(1):169-174. http://d.old.wanfangdata.com.cn/Periodical/dzkxxk201501026
    TAN Guoping, HERFET T. A framework of analyzing OMP-based channel estimations in mobile OFDM systems[J]. IEEE Wireless Communications Letters, 2016, 5(4):408-411. doi: 10.1109/LWC.2016.2571688
    MA Xu, YANG Fang, LIU Sicong, et al. Structured compressive sensing-based channel estimation for time frequency training OFDM systems over doubly selective channel[J]. IEEE Wireless Communications Letters, 2017, 6(2):266-269. doi: 10.1109/LWC.2017.2669974
    CHEN B, CUI Q, YANG F, et al. A novel channel estimation method based on Kalman filter compressed sensing for time-varying OFDM system[C]//International Conference on Wireless Communications & Signal Processing.[S.l.]: IEEE, 2014: 1-5.
    RABBI M F, HOU S W, KO C C. High mobility orthogonal frequency division multiple access channel estimation using basis expansion model[J]. IET Communications, 2010, 4(3):353-367. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0211112117/
    SHENG Zhichao, TUAN H D. Pilot optimization for estimation of high-mobility OFDM channels[J]. IEEE Transactions on Vehicular Technology, 2017, 66(10):8795-8806. doi: 10.1109/TVT.2017.2694821
    HIJAZI H, ROS L. Joint data QR-detection and Kalman estimation for OFDM time-varying Rayleigh channel complex gains[J]. IEEE Transactions on Communications, 2010, 58(1):170-178. doi: 10.1109/TCOMM.2010.01.080296
    BERGER C R, ZHOU S, PREISIG J C, et al. Sparse channel estimation for multicarrier underwater acoustic communication:from subspace method to compressed sensing[J]. IEEE Transactions on Signal Process, 2010, 58(3):1708-1721. doi: 10.1109/TSP.2009.2038424
    JAKES W C, COX D C. Microwave mobile communications[M].[S.l.]: IEEE Press, 1974: 28-46.
    BADDOUR K E, BEAULIEU N C. Autoregressive modeling for fading channel simulation[J]. IEEE Transactions on Wireless Communications, 2005, 4(4):1650-1662. doi: 10.1109/TWC.2005.850327
    QI F, JU Y, SUN S, et al. BEM-based reconstruction of time-varying sparse channel in OFDM systems[C]//Vehicular Technology Conference.[S.l.]: IEEE, 2013: 1-5.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(1)

    Article views(464) PDF downloads(67) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return