Citation: | WANG Jiaming, TAN Yuedong, JIN Zhihui, YAN Liying, JI Cheng, LI Zhigang, SHAO Teli. Study on Compression Test and Equivalent Simulation Model of Aluminum Foam[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 91-99, 116. doi: 10.3969/j.issn.0258-2724.20210563 |
In order to investigate the effectiveness of aluminum foam for helicopter crashworthiness design, the mechanical properties of closed cell aluminum foam with two relative densities were tested at quasi-static (0.001 /s) and high strain rates (500 /s, 1000 /s) based on universal testing machine and Hopkinson bar, respectively. An equivalent finite element (FE) model of aluminum foam which considers the strain rate was established. The developed equivalent model of the aluminum foam with different relative densities was applied to the dropping simulation of a helicopter FE model. The crushing level and the deformation of the helicopter were investigated. The results show that the platform stress and mass specific energy absorption increase with relative density and strain rate, but the opposite is true for densification strain. The equivalent finite element model has high accuracy whose response curve can keep consistent with the experimental results. In addition, the maximum deformation of the helicopter floor has been reduced by 28% and 73% and the load-bearing pressure on each component has been reduced by 28% and 42% on average as the aluminum foam with different relative densities was added into the bottom cockpit of the helicopter. The load carrying capacity of aluminum foam with high relative density is higher and more effective.
[1] |
GIBSON L J, ASHBY M F. Cellular solids[M]. Cambridge: Cambridge University Press, 1997.
|
[2] |
程帅,师莹菊,殷文骏,等. 泡沫铝内衬对抗内部爆炸钢筒变形的影响[J]. 爆炸与冲击,2020,40(7): 56-63. doi: 10.11883/bzycj-2019-0339
CHENG Shuai, SHI Yingju, YIN Wenjun, et al. Influence of aluminum foam lining on deformation of steel cylinders subjected to internal blast loading[J]. Explosion and Shock Waves, 2020, 40(7): 56-63. doi: 10.11883/bzycj-2019-0339
|
[3] |
杨旭东,石建,程洁,等. 填加造孔剂法制备泡沫铝及其吸能性能[J]. 航空材料学报,2017,37(2): 55-62. doi: 10.11868/j.issn.1005-5053.2016.000117
YANG Xudong, SHI Jian, CHENG Jie, et al. Fabrication of aluminum foam by space-holder method and the energy absorption properties[J]. Journal of Aeronautical Materials, 2017, 37(2): 55-62. doi: 10.11868/j.issn.1005-5053.2016.000117
|
[4] |
郭亚周,杨海,刘小川,等. 中低应变率下闭孔泡沫铝动态力学性能研究[J]. 振动与冲击,2020,39(3): 282-288.
GUO Yazhou, YANG Hai, LIU Xiaochuan, et al. Dynamic mechanical properties of closed cell aluminum foam under medium and low strain rates[J]. Journal of Vibration and Shock, 2020, 39(3): 282-288.
|
[5] |
李忠献,张茂轩,师燕超. 闭孔泡沫铝的动态压缩性能试验研究[J]. 振动与冲击,2017,36(5): 1-6. doi: 10.13465/j.cnki.jvs.2017.05.001
LI Zhongxian, ZHANG Maoxuan, SHI Yanchao. Tests for dynamic compressive performance of closed-cell aluminum foams[J]. Journal of Vibration and Shock, 2017, 36(5): 1-6. doi: 10.13465/j.cnki.jvs.2017.05.001
|
[6] |
WANG P F, XU S L, LI Z B, et al. Experimental investigation on the strain-rate effect and inertia effect of closed-cell aluminum foam subjected to dynamic loading[J]. Materials Science and Engineering: A, 2015, 620: 253-261. doi: 10.1016/j.msea.2014.10.026
|
[7] |
李雪艳,李志斌,张舵. 不同温度和应变率下的闭孔泡沫铝压缩力学性能[J]. 振动与冲击,2020,39(23): 17-20,29. doi: 10.13465/j.cnki.jvs.2020.23.003
LI Xueyan, LI Zhibin, ZHANG Duo. Compression performance of closed-cell aluminium foam under different temperatures and strain rates[J]. Journal of Vibration and Shock, 2020, 39(23): 17-20,29. doi: 10.13465/j.cnki.jvs.2020.23.003
|
[8] |
甄映红,王展光. 不同温度下闭孔泡沫铝压缩性能研究[J]. 轻金属,2021(1): 52-57. doi: 10.13662/j.cnki.qjs.2021.01.012
ZHEN Yinghong, WANG Zhanguang. Study on compression performance of closed-cell aluminum foam at different temperature[J]. Light Metals, 2021(1): 52-57. doi: 10.13662/j.cnki.qjs.2021.01.012
|
[9] |
王鹏飞,徐松林,胡时胜. 不同温度下泡沫铝压缩行为与变形机制探讨[J]. 振动与冲击,2013,32(5): 16-19. doi: 10.3969/j.issn.1000-3835.2013.05.004
WANG Pengfei, XU Songlin, HU Shisheng. Compressive behavior and deformation mechanism of aluminum foam under different temperature[J]. Journal of Vibration and Shock, 2013, 32(5): 16-19. doi: 10.3969/j.issn.1000-3835.2013.05.004
|
[10] |
郭亚周,刘小川,白春玉,等. 机翼前缘局部填充泡沫铝抗鸟撞特性[J]. 科学技术与工程,2020,20(8): 3348-3355.
GUO Yazhou, LIU Xiaochuan, BAI Chunyu, et al. Anti-bird impact characteristics of partially filled aluminum foaminthe leading edge of wing[J]. Science Technology and Engineering, 2020, 20(8): 3348-3355.
|
[11] |
翟希梅,孟令钊,王建皓. 泡沫铝填充6082-T6铝合金圆管构件轴压力学性能[J]. 哈尔滨工业大学学报,2021,53(4): 80-88. doi: 10.11918/202009001
ZHAI Ximei, MENG Lingzhao, WANG Jianhao. Axial-crushing performance of aluminum foam-filled 6082-T6 aluminum alloy circular tube[J]. Journal of Harbin Institute of Technology, 2021, 53(4): 80-88. doi: 10.11918/202009001
|
[12] |
高强,王良模,王源隆,等. 椭圆形泡沫填充薄壁管斜向冲击吸能特性仿真研究[J]. 振动与冲击,2017,36(2): 201-206,220. doi: 10.13465/j.cnki.jvs.2017.02.033
GAO Qiang, WANG Liangmo, WANG Yuanlong, et al. Energy-absorbing characteristics of foam-filled oval tubes under oblique impact[J]. Journal of Vibration and Shock, 2017, 36(2): 201-206,220. doi: 10.13465/j.cnki.jvs.2017.02.033
|
[13] |
KıLıÇASLAN C. Numerical crushing analysis of aluminum foam-filled corrugated single-and double-circular tubes subjected to axial impact loading[J]. Thin-Walled Structures, 2015, 96: 82-94. doi: 10.1016/j.tws.2015.08.009
|
[14] |
王巍,安子军,彭春彦,等. 闭孔泡沫材料3-D几何建模及力学性能分析[J]. 塑性工程学报,2017,24(4): 194-200.
WANG Wei, AN Zijun, PENG Chunyan, et al. 3-D geometry modeling and mechanical properties analysis of closed-cell foams[J]. Journal of Plasticity Engineering, 2017, 24(4): 194-200.
|
[15] |
郭亚周,杨海,刘小川,等. 闭孔泡沫铝在动态加载下的压缩力学行为研究[J]. 振动工程学报,2020,33(2): 338-346. doi: 10.16385/j.cnki.issn.1004-4523.2020.02.014
GUO Yazhou, YANG Hai, LIU Xiaochuan, et al. Compressive mechanical behavior of closed cell Aluminum foam under dynamic loading[J]. Journal of Vibration Engineering, 2020, 33(2): 338-346. doi: 10.16385/j.cnki.issn.1004-4523.2020.02.014
|
[16] |
国家质量监督检验检疫总局, 中国国家标准化管理委员会. 金属材料延性试验多孔状和蜂窝状金属压缩试验方法: GB/T 31930—2015[S]. 北京: 中国标准出版社, 2016.
|
[17] |
SHEN J H, LU G X, RUAN D. Compressive behaviour of closed-cell aluminium foams at high strain rates[J]. Composites Part B: Engineering, 2010, 41(8): 678-685. doi: 10.1016/j.compositesb.2010.07.005
|
[18] |
Livermore Software Technology Corporation (LSTC). LS-DYNA keyword user’s manual[M]. California: [s.n.], 2013, 3: 1-151.
|
[19] |
HANSSEN A G, HOPPERSTAD O S, LANGSETH M, et al. Validation of constitutive models applicable to aluminium foams[J]. International Journal of Mechanical Sciences, 2002, 44(2): 359-406. doi: 10.1016/S0020-7403(01)00091-1
|