• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 30 Issue 3
Jun.  2017
Turn off MathJax
Article Contents
JIANG Yilin, ZHANG Fangyuan. Clock Synchronization Algorithm Based on Particle Swarm Optimization with Natural Selection[J]. Journal of Southwest Jiaotong University, 2017, 30(3): 593-599. doi: 10.3969/j.issn.0258-2724.2017.03.021
Citation: JIANG Yilin, ZHANG Fangyuan. Clock Synchronization Algorithm Based on Particle Swarm Optimization with Natural Selection[J]. Journal of Southwest Jiaotong University, 2017, 30(3): 593-599. doi: 10.3969/j.issn.0258-2724.2017.03.021

Clock Synchronization Algorithm Based on Particle Swarm Optimization with Natural Selection

doi: 10.3969/j.issn.0258-2724.2017.03.021
  • Received Date: 03 Mar 2016
  • Publish Date: 25 Jun 2017
  • In order to improve the clock synchronization accuracy of wireless sensor network (WSN) and avoid the synchronization error caused by the unreliable data and the change of the network topology structure in the synchronization process, a simulation model of particle swarm optimization (PSO) algorithm based on natural selection was established. Firstly, using Kalman filtering algorithm to locally filter the measurement data of multiple sensors, the redundant information in the bottom of the measurement data could be removed so that the accuracy of measurement data is improved. Then, particle swarm optimization algorithm based on natural selection was used to set up a data fusion model and calculate the optimal fused estimation. Finally,the simulation results of the fusion model of PSO algorithm based on natural selection show that the fusion algorithm can effectively realize the fusion of five node clock in the networks, and improve the fusion accuracy of time offset and frequency offset of node crystal oscillating, producing a virtual clock of high stability. The concentration ranges of fusion accuracy of time offset and frequency offset are 10-5 and 10-7, respectively. Compared with traditional adaptive fusion algorithms, the concentration ranges of fusion accuracy of time offset and frequency offset are improved by one order of magnitude.

     

  • loading
  • GANERIWAL S. Timing-sync protocol for sensor networks[C]//International Conference on Embedded Networked Sensor Systems.[S.l.]: ACM, 2003: 138-149.
    MARI M, KUSY B, SIMON G G, et al. The flooding time synchronization protocol[C]//International Conference on Embedded Networked Sensor Systems. Baltimore:[s.n.], 2004: 39-49.
    ELSON J, ROMER K. Wireless sensor network: a new regime for time synchronization[J]. ACM Sigcomm Computer Communication Review, 2003, 33(1): 149-154.
    GIROD L, ELSON J, ESTRIN D. Fine-grained network time synchronization using reference broadcasts[J]. Proceedings of OSDI, 2002, 36(Sup.1): 147-163.
    李晓珍.基于IEEE 1588的网络时间同步系统研究[D]. 西安:中国科学院研究生院,2011.
    周思捷. 基于IEEE 1588无线网络时间同步技术研究[D]. 上海:上海交通大学,2013.
    BLETSAS A. Evaluation of Kalman filtering for network time keeping[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2006, 52(9): 1452-1460.
    董真杰,郑琛瑶,张国龙. 不同精度数据融合的自适应加权平均法研究[J]. 船舶电子工程,2014,34(10): 31-33. DONG Zhenjie, ZHENG Chenyao, ZHANG Guolong. Self-adaption of weighted average research for data fusion with different precision[J]. Ship Electronic Engineering, 2014, 34(10): 31-33.
    唐亚鹏. 基于自适应加权数据融合算法的数据处理[J]. 计算机技术与发展,2015,25(4): 53-56. TANG Yapeng. Data processing based on adaptive weighted data fusion algorithm[J]. Computer Technology and Development, 2015, 25(4): 53-56.
    ZHANG L Y, LI D, ZHANG L, et al. A weighted fusion algorithm of multi-sensor based on optimized grouping[C]//Intelligent Control and Automation. Dalian: The Sixth World Congress, 2006: 5350-5353.
    QU B Y, LIANG J J, SUGANTHAN P N. Niching particle swarm optimization with local search for multi-modal optimization[J]. Information Sciences, 2012, 197: 131-143.
    LIANG J J, QIN A K, SUGANTHAN P N. Comprehensive learning particle swarm optimizer for optimizer for global optimization of multimodal function[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(3): 1158-1162.
    OLIVEIRA M, BASTOS-FILHO C, MENEZES R. Using network science to assess particle swarm optimizers[J]. Social Network Analysis and Mining, 2015, 5(1): 1-13.
    WU Xinjie, CUI Chunyang, HU Sheng, et al. The velocity measurement of two-phase flow based on particle swarm optimization algorithm and nonlinear blind source separation[J]. Chinese Journal of Chemical Engineering, 2012, 20(2): 346-351.
    何莉,刘晓东,李松阳,等. 多核环境下并行粒子群算法[J]. 计算机应用,2015,35(9): 2482-2485,2518. HE Li, LIU Xiaodong, LI Songyang, et al. Parallel particle swarm optimization algorithm in multicore computing environment[J]. Journal of Computer Applications, 2015, 35(9): 2482-2485,2518.
    吴海,孙永雄,韩伟,等. 多核环境下的粒子群算法[J]. 吉林大学学报,2012,30(5): 549-554. WU Hai, SUN Yongxiong, HAN Wei, et al. PSO algorithm in multi-nuclear environment[J]. Journal of Jilin University, 2012, 30(5): 549-554.
    赵广宇. 无线传感器网络中基于预测模型的数据融合算法研究[D]. 吉林:吉林大学,2012.
    任俊亮,邢清华,李龙跃,等. 分布式传感器调度模型与自适应概率粒子群优化算法[J]. 电子学报,2015,43(9): 1756-1762. REN Junliang, XING Qinghua, LI Longyue, et al. A model of distributed sensors' scheduling and self-adaptive probability particle swarm optimization algorithm[J]. ACTA Electronica Sinica, 2015, 43(9): 1756-1762.
    杨晓燕. 基于改进PSO的多传感器数据自适应加权融合算法[J]. 闽江学院学报,2011,32(5): 67-71. YANG Xiaoyan. Adaptive weighted fusion algorithm of multi-sensor data based on improved particle swarm optimization[J]. Journal of Min Jiang University, 2011, 32(5): 67-71.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(519) PDF downloads(127) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return