• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
YANG Liu, BAI Chaoyuan, FAN Pingzhi. Co-optimization Algorithm for Measurement Matrix of Compressive Sensing[J]. Journal of Southwest Jiaotong University, 2025, 60(2): 454-461. doi: 10.3969/j.issn.0258-2724.20230032
Citation: YANG Liu, BAI Chaoyuan, FAN Pingzhi. Co-optimization Algorithm for Measurement Matrix of Compressive Sensing[J]. Journal of Southwest Jiaotong University, 2025, 60(2): 454-461. doi: 10.3969/j.issn.0258-2724.20230032

Co-optimization Algorithm for Measurement Matrix of Compressive Sensing

doi: 10.3969/j.issn.0258-2724.20230032
  • Received Date: 08 Feb 2023
  • Rev Recd Date: 25 Apr 2023
  • Available Online: 07 Dec 2024
  • Publish Date: 06 May 2023
  • For the compressive sensing algorithm, the correlation between measurement matrix and sparse base always determines the accuracy of signal recovery. In order to improve the performance of the compressive sensing algorithm in signal reconstruction in large-scale communication scenarios, the measurement matrix was improved based on matrix decomposition and equiangular tight frame (ETF) theory. Firstly, a dictionary matrix was constructed based on the measurement matrix and sparse base, and a Gram matrix was constructed. Eigenvalue decomposition was used to reduce the average correlation of the Gram matrix. Then, based on the ETF theory and gradient reduction theory, the Gram matrix was pushed to approach the ETF matrix to reduce the maximum value of the non-principal diagonal elements of the Gram matrix and the maximum correlation between the measurement matrix and the sparse basis. The orthogonal matching pursuit (OMP) algorithm was used as the reconstruction algorithm for simulation and verification, and the simulation results show that after optimization, the correlation coefficient of the matrix is reduced by 40%–50%. In channel estimation and active user detection, the estimation error of active user number by the proposed algorithm is more than 50% lower than that by other optimization algorithms under high sparsity; compared with other matrices, the mean square error of channel estimation is improved by 3 dB, and the bit error rate performance is improved by 2 dB.

     

  • [1]
    DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. doi: 10.1109/TIT.2006.871582
    [2]
    SENEL K, LARSSON E G. Grant-free massive MTC-enabled massive MIMO: a compressive sensing approach[J]. IEEE Transactions on Communications, 2018, 66(12): 6164-6175. doi: 10.1109/TCOMM.2018.2866559
    [3]
    ROBAEI M, AKL R, CHATAUT R, et al. Adaptive millimeter-wave channel estimation and tracking[C]//2022 24th International Conference on Advanced Communication Technology (ICACT). PyeongChang: IEEE, 2022: 23-28.
    [4]
    DUAN L G, YANG X Y, LI A P. WSN data compression model based on K-SVD dictionary and compressed sensing[C]//International Conference of Pioneering Computer Scientists, Engineers and Educators. Singapore: Springer, 2021: 429-442.
    [5]
    JIANG R K, WANG X T, CAO S, et al. Joint compressed sensing and enhanced whale optimization algorithm for pilot allocation in underwater acoustic OFDM systems[J]. IEEE Access, 2019, 7: 95779-95796. doi: 10.1109/ACCESS.2019.2929305
    [6]
    曾祥洲. 基于压缩感知块结构信号的稀疏表示与重构算法研究[D]. 广州: 华南理工大学,2016.
    [7]
    XU Q R, SHENG Z C, FANG Y, et al. Measurement matrix optimization for compressed sensing system with constructed dictionary via Takenaka-Malmquist functions[J]. Sensors, 2021, 21(4): 1229.1-1229.14.
    [8]
    宋儒瑛,张朝阳. 基于分块矩阵法优化测量矩阵的研究[J]. 太原师范学院学报(自然科学版),2022,21(2): 1-7.
    [9]
    魏从静. 压缩感知中测量矩阵的构造与优化研究[D]. 南京: 南京邮电大学,2016.
    [10]
    HE J A, WANG T, WANG C F, et al. Improved measurement matrix construction with pseudo-random sequence in compressed sensing[J]. Wireless Personal Communications, 2022, 123(4): 3003-3024. doi: 10.1007/s11277-021-09274-6
    [11]
    BARANIUK R G. Compressive sensing[J]. IEEE Signal Processing Magazine, 2007, 24(4): 118-121. doi: 10.1109/MSP.2007.4286571
    [12]
    DONOHO D L, ELAD M. Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(5): 2197-2202.
    [13]
    TROPP J A. Greed is good: algorithmic results for sparse approximation[J]. IEEE Transactions on Information Theory, 2004, 50(10): 2231-2242. doi: 10.1109/TIT.2004.834793
    [14]
    郭桂祥. 基于非凸优化方法的压缩感知SAR成像研究[D]. 南京: 南京信息工程大学,2022.
    [15]
    WU Q S, FU Y, ZHANG Y D, et al. Structured Bayesian compressive sensing exploiting dirichlet process priors[J]. Signal Processing, 2022, 201: 108680.1-108680.15.
    [16]
    WANG B C, MIR T, JIAO R C, et al. Dynamic multi-user detection based on structured compressive sensing for IoT-oriented 5G systems[C]//2016 URSI Asia-Pacific Radio Science Conference (URSI AP-RASC). Seoul: IEEE, 2016: 431-434.
    [17]
    JIANG X H, LI N, GUO Y, et al. Sensing matrix optimization for multi-target localization using compressed sensing in wireless sensor network[J]. China Communications, 2022, 19(3): 230-244. doi: 10.23919/JCC.2022.03.017
    [18]
    TSILIGIANNI E, KONDI L P, KATSAGGELOS A K. Approximate equiangular tight frames for compressed sensing and CDMA applications[J]. EURASIP Journal on Applied Signal Processing, 2017, 2017(1): 66.1-66.14.
    [19]
    ELAD M. Optimized projections for compressed sensing[J]. IEEE Transactions on Signal Processing, 2007, 55(12): 5695-5702. doi: 10.1109/TSP.2007.900760
    [20]
    SARDY S, BRUCE A G, TSENG P. Block coordinate relaxation methods for nonparametric wavelet denoising[J]. Journal of Computational and Graphical Statistics, 2000, 9(2): 361-379. doi: 10.1080/10618600.2000.10474885
    [21]
    WANG G, NIU M Y, FU F W. Deterministic constructions of compressed sensing matrices based on codes[J]. Cryptography and Communications, 2019, 11(4): 759-775. doi: 10.1007/s12095-018-0328-z
    [22]
    YI R J, CUI C, WU B, et al. A new method of measurement matrix optimization for compressed sensing based on alternating minimization[J]. Mathematics, 2021, 9(4): 329.1-329.19.
    [23]
    YU L F, LI G, CHANG L P. Optimizing projection matrix for compressed sensing systems[C]//2011 8th International Conference on Information, Communications & Signal Processing. Singapore: IEEE, 2011: 1-5.
  • Relative Articles

    [1]LI Hengchao, LIU Xianglian, LIU Peng, FENG Bin. Dense Crowd Counting Network Based on Multi-scale Perception[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1176-1183, 1214. doi: 10.3969/j.issn.0258-2724.20220823
    [2]WU Xinwei, HU Minghua, MAO Jizhi, WANG Yang. Collaborative Target Azimuth Perception Algorithm of Unmanned Aerial Vehicles Based on Spatial Spectrum Estimation[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 898-906, 932. doi: 10.3969/j.issn.0258-2724.20230438
    [3]ZHU Yunfang, WU Zhiyu, GAO Yan, HOU Yishuang, LIU Zhengjie. Recognition Method for Multi-scale Sparse Power Quality Disturbance[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 18-26. doi: 10.3969/j.issn.0258-2724.20180606
    [4]HOU Jin, LÜ Zhiliang, XU Mao, WU Peijun, LIU Yuling, ZHANG Xiaoyu, CHENG Zeng. Combined Neural Networks Based on Deep Learning for Signal Detection in Aeronautical Communications[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 863-869, 878. doi: 10.3969/j.issn.0258-2724.20180164
    [5]YUAN Weina, WANG Jiaxuan. Fast Time-Varying Sparse Channel Estimation Based on Kalman Filter[J]. Journal of Southwest Jiaotong University, 2018, 53(4): 835-841. doi: 10.3969/j.issn.0258-2724.2018.04.023
    [6]YAN Bin, CHEN Hao, WANG Wendong, ZHOU Xiaojia. 1 Bit Compressed Sensing Reconstruction Algorithm Based on Blind Operation[J]. Journal of Southwest Jiaotong University, 2015, 28(2): 264-269. doi: 10.3969/j.issn.0258-2724.2015.02.009
    [7]GUO Liang, GAO Hongli, HUANG Haifeng, ZHANG Xiaochen. Time-Varying Signal Compression Technology Based on Compressed Sensing[J]. Journal of Southwest Jiaotong University, 2015, 28(3): 511-516. doi: 10.3969/j.issn.0258-2724.2015.03.020
    [8]WANG Chengliang, ZHANG Chen, HUANG Wenlong. Origin-Destination Matrix Estimation Model for Freeway Oriented Internet of Vehicles[J]. Journal of Southwest Jiaotong University, 2013, 26(6): 1078-1083. doi: 10.3969/j.issn.0258-2724.2013.06.017
    [9]JIANG Peng, JIN Weidong. Adaptive Foreground Detection Based on Weighted Kernel Density Estimation[J]. Journal of Southwest Jiaotong University, 2012, 25(5): 769-775. doi: 10.3969/j.issn.0258-2724.2012.05.007
    [10]ZHANG Bo, JUAN Zhi-Cai, LIN Xu-Xun. Stochastic User Equilibrium Model Based on Cumulative Prospect Theory[J]. Journal of Southwest Jiaotong University, 2011, 24(5): 868-874. doi: 10.3969/j.issn.0258-2724.2011.05.026
    [11]YU Ningyu, MA Hongguang, SHI Rong, YUZ hibin. Parameter Estimation of Co-channel Multi-signals Based on Cyclic Spectrum Amplitude[J]. Journal of Southwest Jiaotong University, 2011, 24(2): 303-309. doi: 10.3969/j.issn.0258-2724.2011.02.021
    [12]CHEN Hong, FAN Pingzhi. Performance Evaluation of Multi-channel Stop-and-Wait ARQ with Packet Combining[J]. Journal of Southwest Jiaotong University, 2007, 20(5): 589-594.
    [13]JIANGTi-gang. Improved Scheme of Channel Allocation of GSM/GPRS Networks[J]. Journal of Southwest Jiaotong University, 2004, 17(4): 481-484.
    [14]ZHANGLian-bo, FANGXu-ming. Simulation Investigation of Channel Access Mechanism for 802.11e EDCF[J]. Journal of Southwest Jiaotong University, 2004, 17(5): 660-664.
    [15]ZHAO Wen-cheng, GAO Bo, WANG Ying-xue, JUJua. Theoretical Investigation of Compression Wave Induced by High-Speed Train Entering Tunne[J]. Journal of Southwest Jiaotong University, 2004, 17(4): 447-450.
    [16]LIU Wei, ZHU Chang-qian. An Algorithm of Joint Adaptive Multi-User Detector[J]. Journal of Southwest Jiaotong University, 2002, 15(5): 541-543.
    [17]FANGXu-ming, ZHUChang-qian, FANPing-zhi. A Channel Borrowing Assignment Strategy with Directional Locking in Mobile Communication Systems[J]. Journal of Southwest Jiaotong University, 2001, 14(3): 268-271.
    [18]JIN Yu-guang, CHENZi-li. Notes on the Factorizations of Compact and Weakly Compact Operators[J]. Journal of Southwest Jiaotong University, 2001, 14(2): 217-219.
  • 加载中
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 22.8 %FULLTEXT: 22.8 %META: 72.5 %META: 72.5 %PDF: 4.7 %PDF: 4.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 39.3 %其他: 39.3 %其他: 0.4 %其他: 0.4 %上海: 0.4 %上海: 0.4 %北京: 2.1 %北京: 2.1 %十堰: 0.4 %十堰: 0.4 %南通: 0.2 %南通: 0.2 %南阳: 0.2 %南阳: 0.2 %哥伦布: 0.6 %哥伦布: 0.6 %嘉兴: 0.6 %嘉兴: 0.6 %大庆: 0.2 %大庆: 0.2 %天津: 0.8 %天津: 0.8 %宣城: 1.1 %宣城: 1.1 %山景城: 1.1 %山景城: 1.1 %张家口: 5.9 %张家口: 5.9 %徐州: 0.2 %徐州: 0.2 %成都: 0.8 %成都: 0.8 %扬州: 2.7 %扬州: 2.7 %景德镇: 0.2 %景德镇: 0.2 %杭州: 0.4 %杭州: 0.4 %武汉: 0.8 %武汉: 0.8 %池州: 0.4 %池州: 0.4 %沈阳: 0.2 %沈阳: 0.2 %泰安: 0.6 %泰安: 0.6 %洛阳: 0.2 %洛阳: 0.2 %淄博: 0.4 %淄博: 0.4 %深圳: 0.2 %深圳: 0.2 %温州: 2.1 %温州: 2.1 %漯河: 5.3 %漯河: 5.3 %盐城: 0.2 %盐城: 0.2 %石家庄: 5.7 %石家庄: 5.7 %芒廷维尤: 7.4 %芒廷维尤: 7.4 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.2 %苏州: 0.2 %衡阳: 0.6 %衡阳: 0.6 %襄阳: 0.2 %襄阳: 0.2 %西宁: 9.9 %西宁: 9.9 %西安: 0.4 %西安: 0.4 %诺沃克: 2.3 %诺沃克: 2.3 %贵阳: 0.2 %贵阳: 0.2 %运城: 0.2 %运城: 0.2 %遵义: 0.2 %遵义: 0.2 %邯郸: 1.5 %邯郸: 1.5 %郑州: 0.4 %郑州: 0.4 %重庆: 0.8 %重庆: 0.8 %长沙: 0.4 %长沙: 0.4 %雷德蒙德: 0.2 %雷德蒙德: 0.2 %青岛: 0.2 %青岛: 0.2 %其他其他上海北京十堰南通南阳哥伦布嘉兴大庆天津宣城山景城张家口徐州成都扬州景德镇杭州武汉池州沈阳泰安洛阳淄博深圳温州漯河盐城石家庄芒廷维尤芝加哥苏州衡阳襄阳西宁西安诺沃克贵阳运城遵义邯郸郑州重庆长沙雷德蒙德青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article views(342) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return