Citation: | ZHU Yunfang, WU Zhiyu, GAO Yan, HOU Yishuang, LIU Zhengjie. Recognition Method for Multi-scale Sparse Power Quality Disturbance[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 18-26. doi: 10.3969/j.issn.0258-2724.20180606 |
杨洪耕,肖先勇,刘俊勇. 电能质量问题的研究和技术进展(一)——电能质量一般概念[J]. 电力自动化设备,2003,23(10): 1-4. doi: 10.3969/j.issn.1006-6047.2003.10.001
YANG Honggeng, XIAO Xianyong, LIU Junyong. Issues and technology assessment on power quality part1:general concepts on power quality[J]. Electric Power Automation Equipment, 2003, 23(10): 1-4. doi: 10.3969/j.issn.1006-6047.2003.10.001
|
董伟杰,白晓民,朱宁辉,等. 间歇式电源并网环境下电能质量问题研究[J]. 电网技术,2013,37(5): 1265-1271.
DONG Weijie, BAI Xiaomin, ZHU Ninghui, et al. Discussion on the power quality under grid-connection of intermittent power sources[J]. Power System Technology, 2013, 37(5): 1265-1271.
|
朱玲,刘志刚,胡巧琳,等. 基于CWD谱峭度的暂态电能质量扰动识别[J]. 电力自动化设备,2014,34(2): 125-131. doi: 10.3969/j.issn.1006-6047.2014.02.022
ZHU Ling, LIU Zhigang, HU Qiaolin, et al. Recognition of transient power quality disturbances based on CWD spectral kurtosis[J]. Electric Power Automation Equipment, 2014, 34(2): 125-131. doi: 10.3969/j.issn.1006-6047.2014.02.022
|
黄建明,瞿合祚,李晓明. 基于短时傅里叶变换及其谱峭度的电能质量混合扰动分类[J]. 电网技术,2016,40(10): 3184-3191.
HUANG Jianming, QU Hezuo, LI Xiaoming, et al. Classification for hybrid power quality disturbance based on STFT and its spectral kurtosis[J]. Power System Technology, 2016, 40(10): 3184-3191.
|
吴兆刚,李唐兵,姚建刚,等. 基于小波和改进神经树的电能质量扰动分类[J]. 电力系统保护与控制,2014,42(24): 86-92. doi: 10.7667/j.issn.1674-3415.2014.24.014
WU Zhaogang, LI Tangbing, YAO Jiangang, et al. Power quality disturbance classification based on a wavelet and improved neural tree[J]. Power System Protection and Control, 2014, 42(24): 86-92. doi: 10.7667/j.issn.1674-3415.2014.24.014
|
占勇,程浩忠,丁屹峰,等. 基于S变换的电能质量扰动支持向量机分类识别[J]. 中国电机工程学报,2005,25(4): 51-56. doi: 10.3321/j.issn:0258-8013.2005.04.010
ZHAN Yong, CHENG Haozhong, DING Yifeng, et al. S-transform-based classification of power quality disturbance signals by support vector machines[J]. Proceedings of the CSEE, 2005, 25(4): 51-56. doi: 10.3321/j.issn:0258-8013.2005.04.010
|
姚建刚,郭知非,陈锦攀,等. 基于小波和BP神经网络的电能扰动分类新方法[J]. 电网技术,2012,36(5): 139-144.
YAO Jiangang, GUO Zhifei, CHEN Jinpan, et al. New approach to recognize power quality disturbances based on wavelet transform and BP neural network[J]. Power System Technology, 2012, 36(5): 139-144.
|
朱云芳,戴朝华,陈维荣,等. 压缩感知理论及其电能质量应用与展望[J]. 电力系统及其自动化学报,2015,27(1): 80-85. doi: 10.3969/j.issn.1003-8930.2015.01.015
ZHU Yunfang, DAI Chaohua, CHEN Weirong, et al. Present status and prospect on compressed sensing in power systems[J]. Proceedings of the CSU-EPSA, 2015, 27(1): 80-85. doi: 10.3969/j.issn.1003-8930.2015.01.015
|
杨烁,曹思扬,戴朝华,等. 电能质量扰动信号时频原子分解的进化匹配追踪算法[J]. 电力系统保护与控制,2015,43(16): 79-86. doi: 10.7667/j.issn.1674-3415.2015.16.012
YANG Suo, CAO Siyang, DAI Chaohua, et al. Evolutionary matching pursuit based time-frequency atom decomposition for power quality disturbance signals[J]. Power System Protection and Control, 2015, 43(16): 79-86. doi: 10.7667/j.issn.1674-3415.2015.16.012
|
闫敬文, 刘蕾, 屈小波. 压缩感知及应用[M]. 北京: 国防工业出版社, 2015: 21-35.
|
曹思扬,戴朝华,朱云芳,等. 一种新的电能质量扰动信号压缩感知识别方法[J]. 电力系统保护与控制,2017,45(3): 7-12.
CAO Siyang, DAI Chaohua, ZHU Yunfang, et al. A novel compressed sensing-based recognition method for power quality disturbance signals[J]. Power System Protection and Control, 2017, 45(3): 7-12.
|
沈跃,刘国海,刘慧. 随机降维映射稀疏表示的电能质量扰动多分类研究[J]. 仪器仪表学报,2011,32(6): 1371-1376.
SHEN Yue, LIU Guohai, LIU Hui. Study on classification method of power quality disturbances based on random dimensionality reduction projection and sparse representation[J]. Chinese Journal of Scientific Instrument, 2011, 32(6): 1371-1376.
|
朱乔木,党杰,陈金富,等. 基于深度置信网络的电力系统暂态稳定评估方法[J]. 中国电机工程学报,2018,38(3): 735-743.
ZHU Qiaomu, DANG Jie, CHEN Jinfu, et al. A method for power system transient stability assessment based on deep belief networks[J]. Proceedings of the CSEE, 2018, 38(3): 735-743.
|
SHAO H, JIANG H, ZHANG H, et al. Rolling bearing fault feature learning using improved convolutional deep belief network with compressed sensing[J]. Mechanical Systems & Signal Processing, 2018, 100: 743-765.
|
MA Jian, ZHANG Jun, XIAO Luxin, et al. Classification of power quality disturbances via deep learning[J]. IETE Technical Review, 2018, 34: 408-415.
|
BARANIUK R G. Compressive sensing(Lecture Notes)[J]. IEEE Signal Processing Magazine, 2007, 24(4): 118-121. doi: 10.1109/MSP.2007.4286571
|
CANDES E J, WAKIN M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30. doi: 10.1109/MSP.2007.914731
|
张春霞,姬楠楠,王冠伟. 受限波尔兹曼机[J]. 工程数学学报,2015,32(2): 159-173. doi: 10.3969/j.issn.1005-3085.2015.02.001
ZHANG Chunxia, JI Nannan, WANG Guangwei. Restricted Boltzmann machines[J]. Chinese Journal of Engineering Mathematics, 2015, 32(2): 159-173. doi: 10.3969/j.issn.1005-3085.2015.02.001
|
孙劲光,蒋金叶,孟祥福,等. 一种数值属性的深度置信网络分类方法[J]. 计算机工程与应用,2014,50(2): 112-115. doi: 10.3778/j.issn.1002-8331.1308-0377
SUN Jinguang, JIANG Jinye, MENG Xiangfu, et al. DBN classification algorithm for numerical attribute[J]. Computer Engineering and Applications, 2014, 50(2): 112-115. doi: 10.3778/j.issn.1002-8331.1308-0377
|
孔祥玉,郑锋,鄂志君,等. 基于深度信念网络的短期负荷预测方法[J]. 电力系统自动化,2018,42(5): 133-139. doi: 10.7500/AEPS20170826002
KONG Xiangyu, ZHENG Feng, E Zhijun, et al. Short-term load forecasting based on deep belief network[J]. Automation of Electric Power Systems, 2018, 42(5): 133-139. doi: 10.7500/AEPS20170826002
|
李郝林,郭德宝,姜晨,等. 基于改进交叉熵算法的伺服电机参数优化设计[J]. 计算机应用研究,2014,31(5): 1433-1436. doi: 10.3969/j.issn.1001-3695.2014.05.035
LI Haolin, GUO Debao, JIANG Chen, et al. Optimal of servo motor parameters using improved cross entropy method[J]. Application Research of Computers, 2014, 31(5): 1433-1436. doi: 10.3969/j.issn.1001-3695.2014.05.035
|