• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 54 Issue 4
Jul.  2019
Recommendations
Multi-objective asymmetric design for optimizing superconducting electrodynamic suspension system
WANG Jin et al., JOURNAL OF SOUTHWEST JIAOTONG UNIVERSITY, 2025
Optimized design of high-load capacity magnetic bearings
JIANG Hao et al., JOURNAL OF SOUTHWEST JIAOTONG UNIVERSITY, 2025
Remanence compensation of maglev planar motor based on digital twin model
XU Fengqiu et al., JOURNAL OF SOUTHWEST JIAOTONG UNIVERSITY, 2025
Design and magnetic force characteristic analysis of magnetic levitation bearing for artificial kidney pumps
JIN Junjie et al., JOURNAL OF SOUTHWEST JIAOTONG UNIVERSITY, 2024
Conceptual design and calculations for indi-wheel of e-mobility vehicle
S. Santhosh et al., INTERNATIONAL JOURNAL OF VEHICLE STRUCTURES AND SYSTEMS, 2021
Design and optimization of rear wheel assembly for all-terrain vehicle
M. Anthony Bala Paul Raj et al., INTERNATIONAL JOURNAL OF VEHICLE STRUCTURES AND SYSTEMS, 2021
Dynamic testing of in-wheel motor based electric vehicle in longitudinal direction
Muhammad Shukri Azizi Razak et al., INTERNATIONAL JOURNAL OF AUTOMOTIVE AND MECHANICAL ENGINEERING, 2023
The central role of density functional theory in the ai age
Huang, Bing et al., SCIENCE, 2023
Review of surrogate model assisted multi-objective design optimization of electrical machines: new opportunities and challenges
RENEWABLE & SUSTAINABLE ENERGY REVIEWS
Design and evaluation of dual excitation permanent magnet linear machine with optimal utilization of extended working harmonics
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2025
Powered by
ZHANG Heshan, DENG Zhaoxiang, TUO Jiying, ZHANG Yu, TAO Shengchao. Multi-Objective Optimum Design for in-Wheel Motor Based on Improved Artificial Bee Colony Algorithm[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 671-678. doi: 10.3969/j.issn.0258-2724.20170094
Citation: ZHANG Heshan, DENG Zhaoxiang, TUO Jiying, ZHANG Yu, TAO Shengchao. Multi-Objective Optimum Design for in-Wheel Motor Based on Improved Artificial Bee Colony Algorithm[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 671-678. doi: 10.3969/j.issn.0258-2724.20170094

Multi-Objective Optimum Design for in-Wheel Motor Based on Improved Artificial Bee Colony Algorithm

doi: 10.3969/j.issn.0258-2724.20170094
  • Received Date: 24 Feb 2017
  • Rev Recd Date: 12 May 2018
  • Available Online: 12 Jun 2019
  • Publish Date: 01 Aug 2019
  • In order to improve the power density of the in-wheel motor and reduce its material cost, an improved artificial bee colony (IABC) algorithm was proposed to optimize the performance of the in-wheel motor. Firstly, the expressions for the performances of the permanent-magnet in-wheel motor with outer rotor were established by magnetic circuit method. Secondly, individual extremum, population extremum and a pair of asynchronous scaling factors were introduced to overcome the shortcomings of traditional artificial bee colony (ABC) algorithm, such as slow convergence speed, and imbalance in exploration and development. The effective mass, power loss and material cost of the motor were linearly weighted to form a single objective function with the electromagnetic parameters such as number of pole pairs, air-gap clearance and permanent magnet thickness as design variables, and the constrained non-linear objective function was transformed into a non-constrained one by the barrier function method. Finally, the genetic algorithm (GA), traditional ABC algorithm and IABC algorithm were used to optimize the design of the in-wheel motor respectively. The correctness of the calculation results was verified by finite element method and prototype experiment. The results show that the IABC algorithm makes the objective function converge faster than the traditional ABC algorithm. Compared with the GA and traditional ABC algorithm, the IABC algorithm minimizes the objective function value. Compared with the original design, the effective quality of the in-wheel motor is reduced by 13.4%, material cost is reduced by 34.4%, power loss is reduced by 44.2%, and the efficiency is increased by 12.0%.

     

  • 卢东斌,欧阳明高,谷靖,等. 电动汽车永磁同步电机最优制动能量回馈控制[J]. 中国电机工程学报,2013,33(3): 83-91.

    LU Dongbin, OUYANG Minggao, GU Jing, et al. Optimal regenerative braking control for permanent magnet synchronous motors in electric vehicles[J]. Proceedings of the CSEE, 2013, 33(3): 83-91.
    ROMERAL L, URRESTY J C. Modeling of surface-mounted permanent magnet synchronous motors with stator winding interturn faults[J]. IEEE Transactions on Industrial Electronics, 2011, 58(5): 1576-1585. doi: 10.1109/TIE.2010.2062480
    孙跃,谭若兮,唐春森,等. 一种应用于电动汽车的新型耦合机构优化设计[J]. 西南交通大学学报,2018,53(5): 1078-1086.

    SUN Yue, TAN Ruoxi, TANG Chunsen, et al. Optimized design of new coupling mechanism for electric vehicles[J]. Journal of Southwest Jiaotong University, 2018, 53(5): 1078-1086.
    RAHIDEH A, KORAKIANITIS T, RUIZ P, et al. Optimal brushless DC motor design using genetic algorithms[J]. Journal of Magnetism and Magnetic Materials, 2010, 322(22): 3680-3687. doi: 10.1016/j.jmmm.2010.07.025
    陈齐平,舒红宇,任凯,等. 基于改进遗传算法的微型电动车轮毂电机优化设计[J]. 中南大学学报(自然科学版),2012,43(8): 3013-3018.

    CHEN Qiping, SHU Hongyu, REN Kai, et al. Optimization design of driving in-wheel motor of micro-electric vehicle based on improvement genetic algorithm[J]. Journal of Central South University (Science and Technology), 2012, 43(8): 3013-3018.
    李立毅,唐勇斌,刘家曦,等. 多种群遗传算法在无铁心永磁直线同步电机优化设计中的应用[J]. 中国电机工程学报,2013,33(15): 69-77.

    LI Liyi, TANG Yongbin, LIU Jiaxi, et al. Application of the multiple population genetic algorithm in optimum design of air-core permanent magnet linear synchronous motors[J]. Proceedings of the CSEE, 2013, 33(15): 69-77.
    NGUYEN T D, LANFRANCHI V. Comparison of optimization algorithms for the design of a brushless DC machine with travel-time minimization[C]//2009 8th International Symposium on Advanced Electromechanical Motion Systems & Electric Drives Joint Symposium. Lille: IEEE, 2009: 1-6
    ANDERSEN S B, SANTOS I F. Evolution strategies and multi-objective optimization of permanent magnet motor[J]. Applied Soft Computing, 2012, 12(2): 778-792. doi: 10.1016/j.asoc.2011.10.013
    王晓远,高鹏. 基于进化策略的轮毂电机永磁体结构优化设计[J]. 中国电机工程学报,2015,35(4): 979-984.

    WANG Xiaoyuan, GAO Peng. Optimal design of permanent magnets of in-wheel motor based on evolution strategy[J]. Proceedings of the CSEE, 2015, 35(4): 979-984.
    LI S, YANG M. Particle swarm optimization combined with finite element method for design of ultrasonic motors[J]. Sensors and Actuators A: Physical, 2008, 148(1): 285-289. doi: 10.1016/j.sna.2008.08.004
    NAVARDI M J, BABAGHORBARI B, KETABI A. Efficiency improvement and torque ripple minimization of switched reluctance motor using FEM and seeker optimization algorithm[J]. Energy Conversion and Management, 2014, 78(2): 237-244.
    KARABOGA D, BASTURK B. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm[J]. Journal of Global Optimization, 2007, 39(3): 459-471. doi: 10.1007/s10898-007-9149-x
    KARABOGA D, AKAY B. A comparative study of artificial bee colony algorithm[J]. Applied Mathematics and Computation, 2009, 214(1): 108-132. doi: 10.1016/j.amc.2009.03.090
    KARABOGA D, OZTURK C. A novel clustering approach: artificial bee colony (ABC) algorithm[J]. Applied Soft Computing, 2011, 11(1): 652-657. doi: 10.1016/j.asoc.2009.12.025
    KARABOGA D, BASTURK B. On the performance of artificial bee colony (ABC) algorithm[J]. Applied Soft Computing, 2008, 8(1): 687-697. doi: 10.1016/j.asoc.2007.05.007
    毕晓君,王艳娇. 改进人工蜂群算法[J]. 哈尔滨工程大学学报,2012,33(1): 117-123. doi: 10.3969/j.issn.1007-7043.201102020

    BI Xiaojun, WANG Yanjiao. A modified artificial bee colony algorithm and its application[J]. Journal of Harbin Engineering University, 2012, 33(1): 117-123. doi: 10.3969/j.issn.1007-7043.201102020
    毕晓君,王艳娇. 加速收敛的人工蜂群算法[J]. 系统工程与电子技术,2011,33(12): 2755-2761. doi: 10.3969/j.issn.1001-506X.2011.12.34

    BI Xiaojun, WANG Yanjiao. Artificial bee colony algorithm with fast convergence[J]. Systems Engineering and Electronics, 2011, 33(12): 2755-2761. doi: 10.3969/j.issn.1001-506X.2011.12.34
    ZHU G, KWONG S. Gbest-guided artificial bee colony algorithm for numerical function optimization[J]. Applied Mathematics and Computation, 2010, 217(7): 3166-3173. doi: 10.1016/j.amc.2010.08.049
    GAO W, LIU S, HUANG L. A global best artificial bee colony algorithm for global optimization[J]. Journal of Computational and Applied Mathematics, 2012, 236(11): 2741-2753. doi: 10.1016/j.cam.2012.01.013
    KARABOGA D, GORKEMLI B. A combinatorial artificial bee colony algorithm for traveling salesman problem[C]//2011 International Symposium on Innovations in Intelligent Systems and Applications. Turkey: IEEE, 2011: 50-53
    WANG X, TANG L. An adaptive multi-population differential evolution algorithm for continuous multi-objective optimization[J]. Information Sciences, 2016, 348(2): 124-141.
    MARINI F, WALCZAK B. Particle swarm optimization (PSO). A tutorial[J]. Chemometrics and Intelligent Laboratory Systems, 2015, 149(5): 153-165. doi: 10.1016/j.chemolab.2015.08.020
  • Relative Articles

    [1]WANG Jin, GE Qiongxuan, ZHAO Lu. Multi-objective Asymmetric Design for Optimizing Superconducting Electrodynamic Suspension System[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 884-892. doi: 10.3969/j.issn.0258-2724.20240477
    [2]HU Yongpan, ZENG Jiewei, WANG Zhiqiang, LONG Zhiqiang. Performance Optimization of Ultra-High Speed Permanent Magnet Electrodynamic Suspension System[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 773-782. doi: 10.3969/j.issn.0258-2724.20220856
    [3]ZHANG Weiyu, LI Kai, YANG Xin. Multi-Objective Optimization for Flywheel Motors Based on Parameter Priority Division[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 922-932. doi: 10.3969/j.issn.0258-2724.20220845
    [4]ZHANG Zeqiang, JIANG Jin, YIN Tao, XU Peiyu. Modeling and Optimization for U-shaped Partial Multi-Objective Disassembly Line Balancing Problem[J]. Journal of Southwest Jiaotong University, 2022, 57(2): 235-244. doi: 10.3969/j.issn.0258-2724.20200694
    [5]YAO Yuan, CHEN Xiangwang, LI Guang, ZHANG Zhenxian. Multi-objective Optimization of Yaw Damper Parameters for High-Speed Train[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1298-1304. doi: 10.3969/j.issn.0258-2724.20200016
    [6]FU Wenchao, QI Hongfeng, DAI Chaohua, LI Mi, LIU Zhengjie, CHEN Weirong. Multi-objective Matching Optimization for Hybrid Fuel-Cell Power System in Trams[J]. Journal of Southwest Jiaotong University, 2020, 55(3): 604-611. doi: 10.3969/j.issn.0258-2724.20180370
    [7]ZHANG Heshan, XU Jin, DENG Zhaoxiang, JIANG Yanjun. Temperature Field of in-Wheel Motor Using Coupled Multi-physics Domain Solution[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 76-83, 91. doi: 10.3969/j.issn.0258-2724.20170263
    [8]DAI Chaohua, LIU Yang, HUANG Chenxi, ZHAO Duo, GUO Ai, CHEN Weirong, LIU Nan. Parameters Optimization for Hybrid Energy Storage System of Electric Vehicles Based on Cross-Entropy Algorithm[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 839-846. doi: 10.3969/j.issn.0258-2724.20190442
    [9]LI Qi, MENG Xiang, CHEN Weirong, ZHANG Guorui. Parameter Matching and Multi-objective Optimization of Fuel Cell Hybrid System[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 1079-1086. doi: 10.3969/j.issn.0258-2724.20170117
    [10]DUAN Zhengyu, LEI Zengxiang, SUN Shuo, YANG Dongyuan. Multi-Objective Robust Optimisation Method for Stochastic Time-Dependent Vehicle Routing Problem[J]. Journal of Southwest Jiaotong University, 2019, 54(3): 565-572. doi: 10.3969/j.issn.0258-2724.20170617
    [11]ZHANG Fei, ZHANG Jin. Logistics Service Composition Based on Multi-Objective Optimization[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1278-1285, 1307. doi: 10.3969/j.issn.0258-2724.2018.06.025
    [12]ZHANG Zeqiang, WANG Kaipu, ZHU Lixia, CHENG Wenming. Pareto Hybrid Ant Colony and Genetic Algorithm for Multi-Objective U-Shaped Disassembly Line Balancing Problem[J]. Journal of Southwest Jiaotong University, 2018, 53(3): 628-637, 660. doi: 10.3969/j.issn.0258-2724.2018.03.026
    [13]ZHANG Liang, ZHANG Jiye, LI Tian, ZHANG Weihua. Multi-objective Aerodynamic Optimization Design for Head Shape of High-Speed Trains[J]. Journal of Southwest Jiaotong University, 2016, 29(6): 1055-1063. doi: 10.3969/j.issn.0258-2724.2016.06.003
    [14]ZHANG Zeqiang, HU Yang, CHEN Chong. Improved Artificial Bee Colony Algorithm for Disassembly Line Balancing Problem[J]. Journal of Southwest Jiaotong University, 2016, 29(5): 910-917. doi: 10.3969/j.issn.0258-2724.2016.05.013
    [15]WANG Zhifu, LIU Mingchun, ZHOU Yang. Estimation of Longitudinal Speed of In-wheel Motor Driven Vehicle Using Fuzzy Extended Kalman Filter[J]. Journal of Southwest Jiaotong University, 2015, 28(6): 1094-1099. doi: 10.3969/j.issn.0258-2724.2015.06.017
    [16]YANG Kai, ZHANG Zhuhong. Single-Objective Multi-modal Expected Value Programming Based on Immune Optimization[J]. Journal of Southwest Jiaotong University, 2014, 27(6): 1061-1067. doi: 10.3969/j.issn.0258-2724.2014.06.018
    [17]YANG Ming, SU Biao, SUN Zhijie, XU Yi. Model and Algorithm of Multi-objective Discrete Transportation Network Design under Stochastic Demand among OD Pairs[J]. Journal of Southwest Jiaotong University, 2014, 27(1): 119-125. doi: 10.3969/j.issn.0258-2724.2014.01.019
    [18]WANG Fei, MU Weiwei, DONG Jiankang. Aircraft Departure Slot Control Method Based on Multi-objective Optimization[J]. Journal of Southwest Jiaotong University, 2012, 25(4): 680-685. doi: 10.3969/j.issn.0258-2724.2012.04.023
    [19]PANG Xiaoping, CHEN Jin. Multi-objective Shape Optimization of Hydrodynamic Journal Bearings Using Non-dorminated Sorting Genetic Algorithm Ⅱ[J]. Journal of Southwest Jiaotong University, 2012, 25(4): 639-645. doi: 10.3969/j.issn.0258-2724.2012.04.017
    [20]XIE Bo-Jia, HU Meng-Hua, TIAN Yong. Multi-airport Ground Holding Problem Based on Airline Schedule Optimization: Models and Algorithm[J]. Journal of Southwest Jiaotong University, 2010, 23(3): 464-469. doi: 10. 3969/ j. issn. 0258-2724.
  • Cited by

    Periodical cited type(7)

    1. 张维煜,李凯,杨鑫. 基于参数优先级划分的飞轮电机多目标优化. 西南交通大学学报. 2023(04): 922-932 . 本站查看
    2. 刘子坤. 轮毂电机外壳的轻量化应用研究. 机械管理开发. 2023(12): 144-145+148 .
    3. 翟洪飞,侯俊剑,房占鹏,王艳,姚雷. 基于拓扑优化的轮毂电机壳体结构轻量化研究. 机械设计. 2022(01): 105-110 .
    4. 陈瑞,冷迪,李英. 混合CPU架构双态云平台缓存效率优化方法. 信息技术. 2022(05): 148-153 .
    5. 李建伟,于广滨. 改进麻雀搜索算法的轮毂减速器优化设计. 哈尔滨理工大学学报. 2022(05): 56-63 .
    6. 张河山,徐进,邓兆祥,姜艳军. 多物理域耦合求解的轮毂电机温度场. 西南交通大学学报. 2020(01): 76-83+91 . 本站查看
    7. 李佩. 自适应遗传算法在电器产品优化设计中的研究. 现代电子技术. 2020(19): 179-181+186 .

    Other cited types(17)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-122025-012025-022025-032025-042025-052025-062025-072025-082025-092025-102025-1105101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 35.4 %FULLTEXT: 35.4 %META: 60.0 %META: 60.0 %PDF: 4.6 %PDF: 4.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.7 %其他: 7.7 %China: 0.3 %China: 0.3 %[]: 0.1 %[]: 0.1 %上海: 7.2 %上海: 7.2 %东莞: 0.7 %东莞: 0.7 %临汾: 0.6 %临汾: 0.6 %佛山: 0.3 %佛山: 0.3 %北京: 1.9 %北京: 1.9 %十堰: 0.1 %十堰: 0.1 %南京: 2.1 %南京: 2.1 %南昌: 0.1 %南昌: 0.1 %南通: 0.1 %南通: 0.1 %厦门: 0.1 %厦门: 0.1 %台州: 0.1 %台州: 0.1 %合肥: 0.1 %合肥: 0.1 %哥伦布: 0.1 %哥伦布: 0.1 %唐山: 0.3 %唐山: 0.3 %嘉兴: 0.1 %嘉兴: 0.1 %大连: 0.1 %大连: 0.1 %天津: 0.4 %天津: 0.4 %太原: 0.4 %太原: 0.4 %宣城: 0.7 %宣城: 0.7 %宿迁: 0.1 %宿迁: 0.1 %山景城: 0.3 %山景城: 0.3 %广州: 0.4 %广州: 0.4 %弗吉: 0.1 %弗吉: 0.1 %张家口: 2.5 %张家口: 2.5 %成都: 1.0 %成都: 1.0 %扬州: 0.1 %扬州: 0.1 %新乡: 0.1 %新乡: 0.1 %无锡: 0.1 %无锡: 0.1 %昆明: 0.1 %昆明: 0.1 %晋城: 0.1 %晋城: 0.1 %朝阳: 0.3 %朝阳: 0.3 %杭州: 1.1 %杭州: 1.1 %武汉: 0.3 %武汉: 0.3 %池州: 1.0 %池州: 1.0 %沈阳: 1.0 %沈阳: 1.0 %洛阳: 0.1 %洛阳: 0.1 %淄博: 0.1 %淄博: 0.1 %温州: 0.1 %温州: 0.1 %湖州: 0.1 %湖州: 0.1 %漯河: 0.6 %漯河: 0.6 %盐城: 0.1 %盐城: 0.1 %石家庄: 0.8 %石家庄: 0.8 %芒廷维尤: 13.7 %芒廷维尤: 13.7 %芝加哥: 0.3 %芝加哥: 0.3 %西宁: 42.5 %西宁: 42.5 %西安: 0.6 %西安: 0.6 %赣州: 0.7 %赣州: 0.7 %邯郸: 0.1 %邯郸: 0.1 %郑州: 3.3 %郑州: 3.3 %重庆: 0.8 %重庆: 0.8 %镇江: 0.1 %镇江: 0.1 %长沙: 1.8 %长沙: 1.8 %雷德蒙德: 0.3 %雷德蒙德: 0.3 %青岛: 0.8 %青岛: 0.8 %鞍山: 0.3 %鞍山: 0.3 %其他China[]上海东莞临汾佛山北京十堰南京南昌南通厦门台州合肥哥伦布唐山嘉兴大连天津太原宣城宿迁山景城广州弗吉张家口成都扬州新乡无锡昆明晋城朝阳杭州武汉池州沈阳洛阳淄博温州湖州漯河盐城石家庄芒廷维尤芝加哥西宁西安赣州邯郸郑州重庆镇江长沙雷德蒙德青岛鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article views(773) PDF downloads(40) Cited by(24)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return