• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 60 Issue 4
Aug.  2025
Turn off MathJax
Article Contents
WANG Jin, GE Qiongxuan, ZHAO Lu. Multi-objective Asymmetric Design for Optimizing Superconducting Electrodynamic Suspension System[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 884-892. doi: 10.3969/j.issn.0258-2724.20240477
Citation: WANG Jin, GE Qiongxuan, ZHAO Lu. Multi-objective Asymmetric Design for Optimizing Superconducting Electrodynamic Suspension System[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 884-892. doi: 10.3969/j.issn.0258-2724.20240477

Multi-objective Asymmetric Design for Optimizing Superconducting Electrodynamic Suspension System

doi: 10.3969/j.issn.0258-2724.20240477
  • Received Date: 24 Sep 2024
  • Rev Recd Date: 07 Mar 2025
  • Available Online: 14 May 2025
  • Publish Date: 03 Apr 2025
  • In order to improve the performance of superconducting electrodynamic suspension systems, an optimal design method for asymmetric levitation coils was proposed based on global sensitivity analysis and a multi-objective optimization algorithm. First, a mathematical model of the superconducting electrodynamic suspension system was established using the space harmonic method. The magnetic flux intensity of the superconducting magnets and the electromagnetic forces of the levitation coils were then calculated. Next, the model underwent asymmetric optimization. The Sobol’ method was used to calculate the sensitivity of each design parameter, with the levitation force and the mass of the levitation coils per kilometer as the objectives. Based on the sensitivity analysis results, the non-dominated sorting genetic algorithm Ⅱ (NSGA-Ⅱ) was used for optimization. Finally, finite element simulation was carried out to validate the analytical model based on the space harmonic method. The models before and after optimization were compared. The results indicate that the suspension system model established via the space harmonic method was consistent with the finite element model. Compared with the initial system, the optimized asymmetric suspension system shows an 8.3% improvement in levitation force and a 12.9% reduction in the mass of levitation coils per kilometer. When the vertical displacement is 0.02–0.04 m, the levitation force increases from 262.2 kN to 270.2 kN, and the drag force increases from 4.5 kN to 5.4 kN. When the horizontal displacement is 0.17–0.20 m, the levitation force decreases from 306.5 kN to 228.8 kN, and the drag force decreases from 6.2 kN to 4.6 kN. The fluctuations in levitation force and drag force are approximately 6% and 65%, respectively. The variation patterns of levitation and drag forces with respect to displacement directions were revealed, demonstrating the advantages of asymmetric design in enhancing levitation force and achieving lightweight performance. This provides a theoretical reference for the optimal design of superconducting electrodynamic suspension systems.

     

  • loading
  • [1]
    NASIRI-ZARANDI R, HEKMATI A. A review of suspension and traction technologies in maglev trains[C]//2019 International Power System Conference (PSC). Tehran: IEEE, 2019: 129-135.
    [2]
    PHAENKONGNGAM T, CHINNAWONG K, PATUMASUIT N, et al. Reviewing propulsion & levitation system for magnetic levitation train[C]//2021 9th International Electrical Engineering Congress (iEECON). Pattaya: IEEE, 2021: 185-188.
    [3]
    熊嘉阳,邓自刚. 高速磁悬浮轨道交通研究进展[J]. 交通运输工程学报,2021,21(1): 177-198.

    XIONG Jiayang, DENG Zigang. Research progress of high-speed maglev rail transit[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 177-198.
    [4]
    刘士苋,王磊,王路忠,等. 电动悬浮列车及车载超导磁体研究综述[J]. 西南交通大学学报,2023,58(4): 734-753. doi: 10.3969/j.issn.0258-2724.20220621

    LIU Shixian, WANG Lei, WANG Luzhong, et al. Review on electrodynamic suspension trains and on-board superconducting magnets[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 734-753. doi: 10.3969/j.issn.0258-2724.20220621
    [5]
    张榕欣,蔡小培,汤雪扬,等. 超导电动磁浮道岔线形设计与侧向过岔速度优化[J]. 西南交通大学学报,2025,60(4):893-903.

    ZHANG Rongxin, CAI Xiaopei, TANG Xueyang, et al. Alignment design of superconducting electrodynamic suspension turnouts and optimization of lateral crossing speed[J]. Journal of Southwest Jiaotong University, 2025, 60(4):893-903.
    [6]
    赵春发,李煜寒,彭也也,等. 超导电动悬浮列车明线气动特性及其对悬浮状态的影响[J]. 西南交通大学学报,2025,60(4):793-802.

    ZHAO Chunfa, LI Yuhan, PENG Yeye, et al. Aerodynamic characteristics of open wire of superconducting maglev train and its influence on levitation state[J]. Journal of Southwest Jiaotong University, 2025, 60(4):793-802.
    [7]
    MURAI T, IWAMATSU M, YOSHIOKA H. Optimized design of 8-figure null-flux coils in EDS maglev[J]. IEEJ Transactions on Industry Applications, 2003, 123(1): 9-14. doi: 10.1541/ieejias.123.9
    [8]
    MURAI T, FUJIWARA S. Design of coil specifications in EDS maglev using optimization program[J]. IEEJ Transactions on Industry Applications, 1997, 117(7): 905-911. doi: 10.1541/ieejias.117.905
    [9]
    CHEN Y J, FENG J. Optimization of guideway coil dimensions for a magnetic levitation system[J]. IEEE Transactions on Magnetics, 1997, 33(5): 4335-4344. doi: 10.1109/20.620443
    [10]
    CUI L B, LUO J, SU Z H, et al. Fast optimization of null-flux coils for superconducting electrodynamic suspension train with RSM and AMGA[J]. IEEE Transactions on Applied Superconductivity, 2022, 32(5): 3602308.1-3602308.8.
    [11]
    王志涛,蔡尧,龚天勇,等. 基于场–路–运动耦合模型的超导电动悬浮列车特性研究[J]. 中国电机工程学报,2019,39(4): 1162-1171.

    WANG Zhitao, CAI Yao, GONG Tianyong, et al. Characteristic studies of the superconducting electrodynamic suspension train with a field-circuit-motion coupled model[J]. Proceedings of the CSEE, 2019, 39(4): 1162-1171.
    [12]
    GONG X X, LU Q F, LI Y X. Multi-objective optimization for the levitation system of the electrodynamic suspension train with HTS magnets[C]//2021 13th International Symposium on Linear Drives for Industry Applications (LDIA). Wuhan: IEEE, 2021: 1-6.
    [13]
    HUANG H, DENG Z G, LI H T, et al. Numerical simulation of dynamic electromagnetic characteristics of superconducting electrodynamic suspension (EDS) train[J]. IEEE Transactions on Applied Superconductivity, 2021, 31(5): 3601105.1-3601105.5.
    [14]
    NING X F, ZHAO C F, YU Q S, et al. Suspension and guidance performance of a new superconducting EDS system using the 8-shaped ground coils with nonequal turns[J]. IEEE Transactions on Applied Superconductivity, 2024, 34(4): 3601511.1-3601511.11.
    [15]
    王小农,黄靖宇. 超导电动磁浮列车悬浮和导向特性[J]. 同济大学学报(自然科学版),2022,50(10): 1482-1489.

    WANG Xiaonong, HUANG Jingyu. Levitation and guidance characteristics of superconducting electrodynamic maglev train[J]. Journal of Tongji University (Natural Science), 2022, 50(10): 1482-1489.
    [16]
    YONEZU T, WATANABE K, SUZUKI E, et al. Study on electromagnetic force characteristics acting on levitation/guidance coils of a superconducting maglev vehicle system[J]. IEEE Transactions on Magnetics, 2017, 53(11): 8300605.1-8300605.5.
    [17]
    NONAKA S, HIROSAKI T, KAWAKAMI E. Analysis of characteristics of repulsive magnetic levitated train using a space harmonic technique[J]. Electrical Engineering in Japan, 1980, 100(5): 80-88. doi: 10.1002/eej.4391000512
    [18]
    RIBANI P L, URBANO N. Study on figure-eight-shaped coil electrodynamic suspension magnetic levitation systems without cross-connection[J]. IEEE Transactions on Magnetics, 2000, 36(1): 358-365. doi: 10.1109/20.822547
    [19]
    Sobol I M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[J]. Mathematics and Computers in Simulation, 2001, 55(1/2/3): 271-280.
    [20]
    宋健,佘湖清,李超,等. 基于Sobol’ 灵敏度分析的火箭弹自力弹射多目标约束优化[J]. 推进技术,2022,43(12): 40-48.

    SONG Jian, SHE Huqing, LI Chao, et al. Multi-object constraint optimization of rocket self-ejection based on Sobol’ sensitivity analysis[J]. Journal of Propulsion Technology, 2022, 43(12): 40-48.
    [21]
    倪菲,范琳,徐俊起,等. 基于Sobol’ 法的高速磁浮列车单点悬浮系统全局灵敏度分析[J]. 西南交通大学学报,2025,60(4): 812-822.

    NI Fei, FAN Lin, XU Junqi, et al. Global sensitivity analysis of single-point levitation system for high-speed maglev train based on Sobol’ method[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 812-822.
    [22]
    谭富星,李凯,于淼,等. 超导电动悬浮试验线悬浮系统设计及验证[J]. 机车电传动,2024(3): 13-18.

    TAN Fuxing, LI Kai, YU Miao, et al. Design and verification of levitation system for superconducting electrodynamic suspension test line[J]. Electric Drive for Locomotives, 2024(3): 13-18.
    [23]
    OHASHI S, UEDA N. Dependence of the quenched SC coil position on the transient motion of the superconducting magnetically levitated bogie[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(4): 3600604.1-3600604.4.
    [24]
    LEE H W, KIM K C, LEE J. Review of maglev train technologies[J]. IEEE Transactions on Magnetics, 2006, 42(7): 1917-1925. doi: 10.1109/TMAG.2006.875842
    [25]
    邓自刚,刘宗鑫,李海涛,等. 磁悬浮列车发展现状与展望[J]. 西南交通大学学报,2022,57(3): 455-474,530. doi: 10.3969/j.issn.0258-2724.20220001

    DENG Zigang, LIU Zongxin, LI Haitao, et al. Development status and prospect of maglev train[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 455-474,530. doi: 10.3969/j.issn.0258-2724.20220001
    [26]
    徐杰. 超导磁悬浮列车用直线发电机的设计与特性解析分析[D]. 北京:北京交通大学,2020.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article views(212) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return