Citation: | ZHANG Zeqiang, JIANG Jin, YIN Tao, XU Peiyu. Modeling and Optimization for U-shaped Partial Multi-Objective Disassembly Line Balancing Problem[J]. Journal of Southwest Jiaotong University, 2022, 57(2): 235-244. doi: 10.3969/j.issn.0258-2724.20200694 |
Aiming at the advantages of U-shaped layout such as high production efficiency and strong flexibility, combined with the actual disassembly process that only needs to consider the required parts and hazardous parts, the U-shaped partial disassembly line balancing problem (UPDLBP) is proposed, and multi-objective mathematics model is established with the optimization objectives of minimizing the number of workstations, idle time balance indicators, disassembly depth and disassembly costs. On this basis, adaptive opposition-based learning multi-objective wolfpack algorithm (AOBL-MWPA) is proposed for solution calculation. The algorithm adopts adaptive scouting behavior and takes into account the global optimization performance in the early stage of the algorithm iteration and the stability in the later stage; The calling behavior and besieging behavior are discretized under the premise of satisfying the constraints of the priority relationship; Opposition-based learning strategy (OBLS) is used to avoid the algorithm from falling into the local optimum; Pareto solution set idea and crowding distance mechanism of non-dominated sorting genetic algorithm Ⅱ (NSGA-Ⅱ) are given to screen to obtain multiple non-inferior solutions. The proposed algorithm is applied to 19 benchmark examples and compared with existing literature algorithms. Finally, the proposed model and algorithm are applied to the example design of a U-shaped partial disassembly line of a certain automobile. The results show that, the proposed algorithm can solve the optimal value of small-scale problems in terms of the number of workstations on and the idle time balance index. The results obtained in medium and large-scale problems are better than other algorithms; the optimal value can be obtained for both the hazard index and the demand index, and the optimization rate is 100%. Ten sets of optional design schemes are obtained from the case study, which verifies the practicability and effectiveness of the proposed algorithm.
[1] |
GÜNGÖR A, GUPTA S M. Disassembly line in product recovery[J]. International Journal of Production Research, 2002, 40(11): 2569-2589. doi: 10.1080/00207540210135622
|
[2] |
KALAYCI C B, HANCILAR A, GUNGOR A, et al. Multi-objective fuzzy disassembly line balancing using a hybrid discrete artificial bee colony algorithm[J]. Journal of Manufacturing Systems, 2015, 37: 672-682. doi: 10.1016/j.jmsy.2014.11.015
|
[3] |
REN Y P, YU D Y, ZHANG C Y, et al. An improved gravitational search algorithm for profit-oriented partial disassembly line balancing problem[J]. International Journal of Production Research, 2017, 55(24): 7302-7316. doi: 10.1080/00207543.2017.1341066
|
[4] |
BENTAHA M L, BATTAÏA O, DOLGUI A. Lagrangian relaxation for stochastic disassembly line balancing problem[J]. Procedia CIRP, 2014, 17: 56-60. doi: 10.1016/j.procir.2014.02.049
|
[5] |
AVIKAL S, JAIN R, MISHRA P K, et al. A heuristic approach for U-shaped assembly line balancing to improve labor productivity[J]. Computers & Industrial Engineering, 2013, 64(4): 895-901.
|
[6] |
肖钦心,郭秀萍,谷新军. 多类约束下的随机混流U型拆卸线平衡排序问题优化[J]. 工业工程与管理,2019,24(5): 87-96.
XIAO Qinxin, GUO Xiuping, GU Xinjun. The stochastic mixed-model U-shaped disassembly line balancing and sequencing optimization problem with multiple constraints[J]. Industrial Engineering and Management, 2019, 24(5): 87-96.
|
[7] |
张则强,汪开普,朱立夏,等. 多目标U型拆卸线平衡问题的Pareto蚁群遗传算法[J]. 西南交通大学学报,2018,53(3): 628-637,660. doi: 10.3969/j.issn.0258-2724.2018.03.026
ZHANG Zeqiang, WANG Kaipu, ZHU Lixia, et al. Pareto hybrid ant colony and genetic algorithm for multi-objective U-shaped disassembly line balancing problem[J]. Journal of Southwest Jiaotong University, 2018, 53(3): 628-637,660. doi: 10.3969/j.issn.0258-2724.2018.03.026
|
[8] |
GÜNGÖR A, GUPTA S M. Disassembly sequence plan generation using a branch-and-bound algorithm[J]. International Journal of Production Research, 2001, 39(3): 481-509. doi: 10.1080/00207540010002838
|
[9] |
MCGOVERN S M, GUPTA S M. A balancing method and genetic algorithm for disassembly line balancing[J]. European Journal of Operational Research, 2007, 179(3): 692-708. doi: 10.1016/j.ejor.2005.03.055
|
[10] |
KOC A, SABUNCUOGLU I, EREL E. Two exact formulations for disassembly line balancing problems with task precedence diagram construction using an AND/OR graph[J]. IIE Transactions, 2009, 41(10): 866-881. doi: 10.1080/07408170802510390
|
[11] |
AVIKAL S, MISHRA P K, JAIN R. A Fuzzy AHP and PROMETHEE method-based heuristic for disassembly line balancing problems[J]. International Journal of Production Research, 2014, 52(5): 1306-1317. doi: 10.1080/00207543.2013.831999
|
[12] |
KALAYCI C B, POLAT O, GUPTA S M. A hybrid genetic algorithm for sequence-dependent disassembly line balancing problem[J]. Annals of Operations Research, 2016, 242(2): 321-354. doi: 10.1007/s10479-014-1641-3
|
[13] |
张则强,胡扬,陈冲. 求解拆卸线平衡问题的改进人工蜂群算法[J]. 西南交通大学学报,2016,51(5): 910-917. doi: 10.3969/j.issn.0258-2724.2016.05.013
ZHANG Zeqiang, HU Yang, CHEN Chong. Improved artificial bee colony algorithm for disassembly line balancing problem[J]. Journal of Southwest Jiaotong University, 2016, 51(5): 910-917. doi: 10.3969/j.issn.0258-2724.2016.05.013
|
[14] |
苏亚军,张则强,胡扬. 求解拆卸线平衡问题的一种变邻域搜索算法[J]. 现代制造工程,2016(10): 19-25.
SU Yajun, ZHANG Zeqiang, HU Yang. A variable neighborhood search algorithm for disassembly line balancing problem[J]. Modern Manufacturing Engineering, 2016(10): 19-25.
|
[15] |
朱兴涛,张则强,朱勋梦,等. 求解多目标拆卸线平衡问题的一种蚁群算法[J]. 中国机械工程,2014,25(8): 1075-1079. doi: 10.3969/j.issn.1004-132X.2014.08.016
ZHU Xingtao, ZHANG Zeqiang, ZHU Xunmeng, et al. An ant colony optimization algorithm for multi-objective disassembly line balancing problem[J]. China Mechanical Engineering, 2014, 25(8): 1075-1079. doi: 10.3969/j.issn.1004-132X.2014.08.016
|
[16] |
WU H S, ZHANG F M. Wolf pack algorithm for unconstrained global optimization[J]. Mathematical Problems in Engineering., 2014, 2014: 465082.1-465082.17.
|
[17] |
TIZHOOSH H R. Opposition-based learning: a new scheme for machine intelligence[C]//International Conference on Computational Intelligence for Modelling, Control and Automation. Vienna: IEEE, 2005: 695-701.
|
[18] |
丁力平,谭建荣,冯毅雄,等. 基于Pareto蚁群算法的拆卸线平衡多目标优化[J]. 计算机集成制造系统,2009,15(7): 1406-1413,1429.
DING Liping, TAN Jianrong, FENG Yixiong, et al. Multiobjective optimization for disassembly line balancing based on Pareto ant colony algorithm[J]. Computer Integrated Manufacturing Systems, 2009, 15(7): 1406-1413,1429.
|
[19] |
DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm:NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. doi: 10.1109/4235.996017
|
[20] |
MCGOVERN S M, GUPTA S M. Ant colony optimization for disassembly sequencing with multiple objectives[J]. The International Journal of Advanced Manufacturing Technology, 2006, 30(5/6): 481-496.
|
[21] |
李六柯,张则强,邹宾森,等. 免疫机制协作遗传算法的多目标拆卸线平衡优化[J]. 信息与控制,2018,47(6): 671-679.
LI Liuke, ZHANG Zeqiang, ZOU Binsen, et al. Optimization of multi-objective disassembly line balancing problem using immune mechanism cooperative genetic algorithm[J]. Information and Control, 2018, 47(6): 671-679.
|