• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 29 Issue 1
Jan.  2016
Turn off MathJax
Article Contents
ZHANG Junfeng, XU Dehe, WANG Xiaodong. Management Algorithm of Point-Cloud Data Based on Octree Concerned with Adaptive Levels of Detail[J]. Journal of Southwest Jiaotong University, 2016, 29(1): 78-84. doi: 10.3969/j.issn.0258-2724.2016.01.012
Citation: ZHANG Junfeng, XU Dehe, WANG Xiaodong. Management Algorithm of Point-Cloud Data Based on Octree Concerned with Adaptive Levels of Detail[J]. Journal of Southwest Jiaotong University, 2016, 29(1): 78-84. doi: 10.3969/j.issn.0258-2724.2016.01.012

Management Algorithm of Point-Cloud Data Based on Octree Concerned with Adaptive Levels of Detail

doi: 10.3969/j.issn.0258-2724.2016.01.012
  • Received Date: 19 Aug 2014
  • Publish Date: 25 Jan 2016
  • Large-scale point-cloud data are not easy to organize effectively and have great redundancy at dynamic visualization, and it is hard to realize the adaptive display. Aiming at these problems, a new algorithm concerned with the levels of detail (LOD) of point-cloud expression on the basis of octree structure was proposed. The algorithm assigned every scanning point into an octree node, and integrated top-down division with down-top calculation as the pretreatment strategy to reduce the amount of real-time calculation. Then it made any region meet the accuracy requirement and display speed automatically by building conservative simulation-error evaluation criteria. Furthermore, with the help of acceleration methods, large-scale point-cloud data could be organized effectively and expressed smoothly with little data redundancy. Preliminary experiments show that the algorithm has abilities to overcome the shortcoming of the classical R-tree methods; meanwhile, with the support of optimized pretreatment and assistant acceleration methods, the amount of real-time calculation is small and the time of each frame can hold within 0.04 s easily.

     

  • loading
  • 李德仁. 论地球空间信息的三维可视化:基于图形还是基于影像[J]. 测绘学报,2010,39(2): 111-114. LI Deren. 3D visualization of geospatial information: graphics based or imagery based[J]. Acta Geodaetica et Cartographica Sinic, 2010, 39(2): 111-114.
    张帆,黄先锋,李德仁. 基于球面投影的单站地面激光扫描点云构网方法[J]. 测绘学报,2009,38(1): 48-54. ZHANG Fan, HUANG Xianfeng, LI Deren. Spherical projection based triangulation for one station terrestrial laser scanning point cloud[J]. Acta Geodaetica et Cartographica Sinica, 2009, 38(1): 48-54.
    张俊峰,姚志宏. 基于四叉树孤立分割和屏幕误差的地形LOD算法[J]. 西南交通大学学报,2013,48(4): 666-671. ZHANG Junfeng, YAO Zhihong. LOD algorithm of terrain based on conservative screen error and isolated division of quad-tree[J]. Journal of Southwest Jiaotong University, 2013, 48(4): 666-671.
    MANDOW A, MARTINEZ J L, REINA A, et al. Fast range-independent spherical subsampling of 3D laser scanner points and data reduction performance evaluation for scene registration[J]. Pattern Recognition Letters, 2010, 31(11): 1239-1250.
    郑坤,朱良峰,吴信才,等. 三维GIS空间索引技术研究[J]. 地理与地理信息科学,2006,22(4): 35-39. ZHENG Kun, ZHU Liangfeng, WU Xincai, et al. Study on spatial indexing techniques for 3D GIS[J]. Geography and Geo-information Science, 2006, 22(4): 35-39.
    史文中,吴立新,李清泉,等. 三维空间信息系统模型与算法[M]. 北京:电子工业出版社,2007: 216-218.
    ZHU Qing, GONG Jun, ZHANG Yeting. An efficient 3D R-tree spatial index method for virtual geographic environment[J]. ISPRS Journal of Photogrammetry Remote Sensing, 2007, 62(3): 217-224.
    龚俊,朱庆,张叶廷,等. 顾及多细节层次的三维R-索引扩展方法[J]. 测绘学报,2014,40(2): 249-255. GONG Jun, ZHU Qing, ZHANG Yeting, et al. An efficient 3D R-tree extension method concerned with levels of detail[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(2): 249-255.
    龚俊,朱庆,章汉武,等. 基于R树索引的三维场景细节层次自适应控制方法[J]. 测绘学报,2011,40(4): 531-534. GONG Jun, ZHU Qing, ZHANG Hanwu, et al. An adaptive control method of LODs for 3D scene based on R-tree index[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(4): 531-534.
    PFFIFFR N. A subdivision algorithm for smooth 3D terrain models[J]. ISPRS Journal of Photogrammetry Remote Sensing, 2005, 59(3): 115-127.
    RENATO P. Fastmesh: efficient view-dependent meshing[C]//Proceedings of 2001 International Conference on Computer Graphics Applications. Washington D C: IEEE Computer Society, 2001: 22-30.
    李清泉,杨必胜,史文中,等. 三维空间数据的实时获取、建模与可视化[M]. 武汉:武汉大学出版社,2003: 198-204.
    LIU R, PFISTER H, ZWICKER M. Object space EWA surface splatting: a hardware accelerated approach to high quality point rendering[J]. Computer Graphics Forum, 2002, 21(3): 461-470.
    MA Hongchao, WANG Zongyue. Distributed data organization and parallel data retrieval methods for huge laser scanner point clouds[J]. Computers Geosciences, 2011, 37(2): 193-201.
    WAND M, BERNER A, BOKELOH M, et al. Processing and interactive editing of huge point clouds from 3D scanners[J]. Computers Graphics, 2008, 32(2): 204-220.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(833) PDF downloads(496) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return