• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
ZHANG Junfeng, XU Dehe, WANG Xiaodong. Management Algorithm of Point-Cloud Data Based on Octree Concerned with Adaptive Levels of Detail[J]. Journal of Southwest Jiaotong University, 2016, 29(1): 78-84. doi: 10.3969/j.issn.0258-2724.2016.01.012
Citation: ZHANG Junfeng, XU Dehe, WANG Xiaodong. Management Algorithm of Point-Cloud Data Based on Octree Concerned with Adaptive Levels of Detail[J]. Journal of Southwest Jiaotong University, 2016, 29(1): 78-84. doi: 10.3969/j.issn.0258-2724.2016.01.012

Management Algorithm of Point-Cloud Data Based on Octree Concerned with Adaptive Levels of Detail

doi: 10.3969/j.issn.0258-2724.2016.01.012
  • Received Date: 19 Aug 2014
  • Publish Date: 25 Jan 2016
  • Large-scale point-cloud data are not easy to organize effectively and have great redundancy at dynamic visualization, and it is hard to realize the adaptive display. Aiming at these problems, a new algorithm concerned with the levels of detail (LOD) of point-cloud expression on the basis of octree structure was proposed. The algorithm assigned every scanning point into an octree node, and integrated top-down division with down-top calculation as the pretreatment strategy to reduce the amount of real-time calculation. Then it made any region meet the accuracy requirement and display speed automatically by building conservative simulation-error evaluation criteria. Furthermore, with the help of acceleration methods, large-scale point-cloud data could be organized effectively and expressed smoothly with little data redundancy. Preliminary experiments show that the algorithm has abilities to overcome the shortcoming of the classical R-tree methods; meanwhile, with the support of optimized pretreatment and assistant acceleration methods, the amount of real-time calculation is small and the time of each frame can hold within 0.04 s easily.

     

  • 李德仁. 论地球空间信息的三维可视化:基于图形还是基于影像[J]. 测绘学报,2010,39(2): 111-114. LI Deren. 3D visualization of geospatial information: graphics based or imagery based[J]. Acta Geodaetica et Cartographica Sinic, 2010, 39(2): 111-114.
    张帆,黄先锋,李德仁. 基于球面投影的单站地面激光扫描点云构网方法[J]. 测绘学报,2009,38(1): 48-54. ZHANG Fan, HUANG Xianfeng, LI Deren. Spherical projection based triangulation for one station terrestrial laser scanning point cloud[J]. Acta Geodaetica et Cartographica Sinica, 2009, 38(1): 48-54.
    张俊峰,姚志宏. 基于四叉树孤立分割和屏幕误差的地形LOD算法[J]. 西南交通大学学报,2013,48(4): 666-671. ZHANG Junfeng, YAO Zhihong. LOD algorithm of terrain based on conservative screen error and isolated division of quad-tree[J]. Journal of Southwest Jiaotong University, 2013, 48(4): 666-671.
    MANDOW A, MARTINEZ J L, REINA A, et al. Fast range-independent spherical subsampling of 3D laser scanner points and data reduction performance evaluation for scene registration[J]. Pattern Recognition Letters, 2010, 31(11): 1239-1250.
    郑坤,朱良峰,吴信才,等. 三维GIS空间索引技术研究[J]. 地理与地理信息科学,2006,22(4): 35-39. ZHENG Kun, ZHU Liangfeng, WU Xincai, et al. Study on spatial indexing techniques for 3D GIS[J]. Geography and Geo-information Science, 2006, 22(4): 35-39.
    史文中,吴立新,李清泉,等. 三维空间信息系统模型与算法[M]. 北京:电子工业出版社,2007: 216-218.
    ZHU Qing, GONG Jun, ZHANG Yeting. An efficient 3D R-tree spatial index method for virtual geographic environment[J]. ISPRS Journal of Photogrammetry Remote Sensing, 2007, 62(3): 217-224.
    龚俊,朱庆,张叶廷,等. 顾及多细节层次的三维R-索引扩展方法[J]. 测绘学报,2014,40(2): 249-255. GONG Jun, ZHU Qing, ZHANG Yeting, et al. An efficient 3D R-tree extension method concerned with levels of detail[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(2): 249-255.
    龚俊,朱庆,章汉武,等. 基于R树索引的三维场景细节层次自适应控制方法[J]. 测绘学报,2011,40(4): 531-534. GONG Jun, ZHU Qing, ZHANG Hanwu, et al. An adaptive control method of LODs for 3D scene based on R-tree index[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(4): 531-534.
    PFFIFFR N. A subdivision algorithm for smooth 3D terrain models[J]. ISPRS Journal of Photogrammetry Remote Sensing, 2005, 59(3): 115-127.
    RENATO P. Fastmesh: efficient view-dependent meshing[C]//Proceedings of 2001 International Conference on Computer Graphics Applications. Washington D C: IEEE Computer Society, 2001: 22-30.
    李清泉,杨必胜,史文中,等. 三维空间数据的实时获取、建模与可视化[M]. 武汉:武汉大学出版社,2003: 198-204.
    LIU R, PFISTER H, ZWICKER M. Object space EWA surface splatting: a hardware accelerated approach to high quality point rendering[J]. Computer Graphics Forum, 2002, 21(3): 461-470.
    MA Hongchao, WANG Zongyue. Distributed data organization and parallel data retrieval methods for huge laser scanner point clouds[J]. Computers Geosciences, 2011, 37(2): 193-201.
    WAND M, BERNER A, BOKELOH M, et al. Processing and interactive editing of huge point clouds from 3D scanners[J]. Computers Graphics, 2008, 32(2): 204-220.
  • Relative Articles

    [1]YANG Jun, GAO Zhiming, LI Jintai, ZHANG Chen. Correspondence Calculation of Three-Dimensional Point Cloud Model Based on Attention Mechanism[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1184-1193. doi: 10.3969/j.issn.0258-2724.20220682
    [2]ZHU Jun, CHEN Yidong, ZHANG Yunhao, HUANG Huaping, WU Sihao, ZHAO Li. Visualization Method for Fast Fusion of Panorama and Point Cloud Data in Network Environment[J]. Journal of Southwest Jiaotong University, 2022, 57(1): 18-27. doi: 10.3969/j.issn.0258-2724.20200360
    [3]SONG Zhanfeng, GUO Jiejia, LI Jun. Fitting a Straight-Line to Data Points with Correlated Noise Between Coordinate Components under Constraints[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1283-1289. doi: 10.3969/j.issn.0258-2724.20200120
    [4]ZHU Qing, WANG Dengxing, WANG Feng, XIE Xiao, HU Han, HUANG Shuang. Automatic Volume Calculation System for Sand and Gravel Carried by Ship Based on LiDAR Point Cloud[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1199-1206. doi: 10.3969/j.issn.0258-2724.20181051
    [5]WANG Peijun, LÜ Dongxu, CHEN Peng. Complex Point Cloud Registration and Optimized Data Processing for High-Speed Railway Turnout[J]. Journal of Southwest Jiaotong University, 2018, 53(4): 806-812, 849. doi: 10.3969/j.issn.0258-2724.2018.04.019
    [6]LIN Yongjun, QIU Xiujiao, GE Yudong. Fuzzy Comprehensive Evaluation Method for Masonry Structure Safety[J]. Journal of Southwest Jiaotong University, 2016, 29(6): 1214-1221. doi: 10.3969/j.issn.0258-2724.2016.06.023
    [7]SHI Yun. Least Squares Adjustment and Accuracy Estimation in Multiplicative Error Models[J]. Journal of Southwest Jiaotong University, 2014, 27(5): 799-803. doi: 10.3969/j.issn.0258-2724.2014.05.009
    [8]JIANG Lei, LI Xiangbiao, MA Shuwen, ZHOU Liangming, LI Qiqin, DUAN Changde. Registration Method for Point Cloud Based on Feature of One Plane and Two Cylindrical Holes[J]. Journal of Southwest Jiaotong University, 2014, 27(6): 1090-1096. doi: 10.3969/j.issn.0258-2724.2014.06.023
    [9]ZHANG Junfeng, YAO Zhihong. LOD Algorithm of Terrain Based on Conservative Screen Error and Isolated Division of Quad-tree[J]. Journal of Southwest Jiaotong University, 2013, 26(4): 666-671,677. doi: 10.3969/j.issn.0258-2724.2013.04.012
    [10]CHE Mao-Ru, ZHANG Wei-Hua, JIN Hua-Song, Shu-Min-Hao, . Influences ofW heelsetM isalignment on Running Safety ofRailway Vehicles[J]. Journal of Southwest Jiaotong University, 2010, 23(1): 12-16. doi: 10. 3969/.j issn. 0258-2724. 2
    [11]SONG Jing, CU Jian-Huai. Decision Tree Construction Based on Cloud Transform and Rough Set Theory under Characteristic Relation[J]. Journal of Southwest Jiaotong University, 2010, 23(2): 312-316. doi: 10. 3969/ j. issn. 0258-2724.
    [12]CAO Jixing, CHEN Qiu, ZHANG Jiping. Simulation of SHPB Test on Concrete and Uniformity of Stresses[J]. Journal of Southwest Jiaotong University, 2008, 21(1): 67-70.
    [13]YANG Jun, ZHU Changqian. Algorithm for Implicit Surface Reconstruction from Point Cloud Data with Noises[J]. Journal of Southwest Jiaotong University, 2008, 21(1): 29-34.
    [14]TAO Hongcai, HE Dake. Taxonomy of Replay Attacks on Security Protocols Based on Attack Hierarchy[J]. Journal of Southwest Jiaotong University, 2007, 20(3): 335-339.
    [15]XUE Li-xia, WANG Zuo-cheng, LI Yong-shu, Wang Lin-lin. Fuzzy Edge Detection Based on Cloud Model[J]. Journal of Southwest Jiaotong University, 2006, 19(1): 85-90.
    [16]DAI Chaohua, ZHU Yunfang, CHEN Weirong. Cloud Theory-Based Genetic Algorithm[J]. Journal of Southwest Jiaotong University, 2006, 19(6): 729-732.
    [17]PENG Yi-pu, ZHAN Wen-hua. Real-Time Generation of Dynamic Terrain Based on Adaptive Quadtree[J]. Journal of Southwest Jiaotong University, 2002, 15(6): 632-636.
    [18]YANGNing, ZHAOLain-wen, GUO Yao-huang. Stochastic Decision Trees[J]. Journal of Southwest Jiaotong University, 2000, 13(2): 212-215.
    [19]Tang Li, Wu Jingye. Reliability Simulation Analysis of the Dislodging Restrict Appraisal Mode[J]. Journal of Southwest Jiaotong University, 1999, 12(1): 109-114.
  • Cited by

    Periodical cited type(1)

    1. 黄志豪,袁希平,甘淑,杨敏,黎昊. 复杂条带状沟谷地形点云抽稀与内插算法对数字高程模型构建的精度影响. 兰州大学学报(自然科学版). 2023(04): 460-467 .

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-062025-0705101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 25.9 %FULLTEXT: 25.9 %META: 74.1 %META: 74.1 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.5 %其他: 5.5 %其他: 0.3 %其他: 0.3 %[]: 0.3 %[]: 0.3 %上海: 0.6 %上海: 0.6 %东莞: 0.9 %东莞: 0.9 %北京: 3.0 %北京: 3.0 %十堰: 0.6 %十堰: 0.6 %南京: 0.3 %南京: 0.3 %哈尔滨: 0.3 %哈尔滨: 0.3 %嘉兴: 0.3 %嘉兴: 0.3 %天津: 0.6 %天津: 0.6 %威海: 0.3 %威海: 0.3 %张家口: 0.3 %张家口: 0.3 %成都: 2.4 %成都: 2.4 %扬州: 0.6 %扬州: 0.6 %杭州: 1.5 %杭州: 1.5 %桂林: 0.3 %桂林: 0.3 %武汉: 1.2 %武汉: 1.2 %池州: 1.8 %池州: 1.8 %洛杉矶: 0.3 %洛杉矶: 0.3 %深圳: 0.6 %深圳: 0.6 %温州: 0.6 %温州: 0.6 %漯河: 1.2 %漯河: 1.2 %石家庄: 0.9 %石家庄: 0.9 %福州: 0.3 %福州: 0.3 %科隆: 0.6 %科隆: 0.6 %芒廷维尤: 17.7 %芒廷维尤: 17.7 %芝加哥: 0.6 %芝加哥: 0.6 %西宁: 50.3 %西宁: 50.3 %西安: 0.3 %西安: 0.3 %贵阳: 0.3 %贵阳: 0.3 %邯郸: 0.6 %邯郸: 0.6 %郑州: 0.6 %郑州: 0.6 %重庆: 0.6 %重庆: 0.6 %长沙: 2.4 %长沙: 2.4 %青岛: 0.6 %青岛: 0.6 %其他其他[]上海东莞北京十堰南京哈尔滨嘉兴天津威海张家口成都扬州杭州桂林武汉池州洛杉矶深圳温州漯河石家庄福州科隆芒廷维尤芝加哥西宁西安贵阳邯郸郑州重庆长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(883) PDF downloads(496) Cited by(6)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return