• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 27 Issue 5
Oct.  2014
Turn off MathJax
Article Contents
SHI Yun. Least Squares Adjustment and Accuracy Estimation in Multiplicative Error Models[J]. Journal of Southwest Jiaotong University, 2014, 27(5): 799-803. doi: 10.3969/j.issn.0258-2724.2014.05.009
Citation: SHI Yun. Least Squares Adjustment and Accuracy Estimation in Multiplicative Error Models[J]. Journal of Southwest Jiaotong University, 2014, 27(5): 799-803. doi: 10.3969/j.issn.0258-2724.2014.05.009

Least Squares Adjustment and Accuracy Estimation in Multiplicative Error Models

doi: 10.3969/j.issn.0258-2724.2014.05.009
  • Received Date: 23 Oct 2013
  • Publish Date: 25 Oct 2014
  • To probe into the parameter estimation in multiplicative error models, three least squares (LS) adjustment methods, i.e., the LS method, the weighted LS method and the bias-corrected weighted LS method, in multiplicative error models were discussed based on the existing researches and using the least squares theory. Their accuracy estimation expressions were derived, the parameter estimations and the variance-covariance matrices were obtained, and the variances of unit weight were constructed for the three LS adjustment methods. A simulated example demonstrates that the bias-corrected weighted LS method is optimal and unbiased because in the example the estimations of unit weight variance are respectively 1.964 8, 0.999 8 and 0.980 7 to the LS method, the weighted LS method and the bias-corrected weighted LS method.

     

  • loading
  • GOODMAN J W. Some fundamental properties of speckle[J]. Journal of the Optical Society of America, 1976, 66(11): 1145-1150.
    ULABY F T, KOUYATE F, BRISCO B, et al. Textural information in SAR images[J]. IEEE Transactions on Geosciences and Remote Sensing, 1986, 24: 235-245.
    OLIVER C J. Information from SAR images[J]. Journal of Physics D: Applied Physics, 1991, 24: 1493-1514.
    XU P L. Despeckling SAR-type multiplicative noise[J]. International Journal of Remote Sensing,1999, 20: 2577-2596.
    LÓPEZ-MARTÍNEZ C, POTTIER E. On the extension of multidimensional speckle noise model from single-look to multilook SAR image[J]. IEEE Transactions on Geosciences and Remote Sensing, 2007, 45: 305-320.
    LÓPEZ-MARTÍNEZ C, FABREGAS X, PIPIA L. Forest parameter estimation in the Pol-InSAR context employing the multiplicative-additive speckle noise model[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66: 597-607.
    EWING C E, MITCHELL M M. Introduction to geodesy[M]. New York: Elsevier, 1970: 130-146.
    MacDORANP F. Satellite emission radio interferometric earth surveying series: GPS geodetic system[J]. Bull Geodesy, 1979, 53: 117-138.
    SEEBER G. Satellite geodesy[M]. Berlin: de Gruyter, 2003: 539-544.
    WEDDERBURN R W M. Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method[J]. Biometrika, 1974, 61: 439-447.
    McCULLAGH P, NELDER J A. Generalized linear models[M]. London: Chapman and Hall, 1989: 200-290.
    TJUR T. Nonlinear regression, quasi likelihood, and overdispersion in generalized linear models[J]. The American Statistician, 1998, 52: 222-227.
    MATTHEWS G B. Theory and methods: a maximum likelihood estimation procedure for the generalized linear model with restrictions[J]. South African Statistician Journal, 1998, 32: 119-144.
    陈希孺. 广义线性模型的拟似然法[M]. 合肥:中国科学技术大学出版社,2011: 100-130.
    PAUL S, SAHA K K T. The generalized linear model and extensions: a review and some biological and environmental applications[J]. Environmetrics, 2007, 18: 421-443.
    BJÖRKALL S, HÖSSJER O, OHLSSON E. A generalized linear model with smoothing effects for claims reserving[J]. Insurance: Mathematics and Economics, 2011, 49: 27-37.
    HEYDE C C. Quasi-likelihood and its application: a general approach to optimal parameter estimation[M]. New York: Springer, 1997: 32-69.
    XU P L, SHIMADA S. Least squares parameter estimation in multiplicative noise models[J]. Communications in Statistics, 2000, B29: 83-96.
    MAGNUS J, NEUDECKER H. Matrix differential calculus with applications in statistics and econometrics[M]. New York: Wiley and Sons, 1988: 113-131.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(854) PDF downloads(618) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return