• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
LEI Hujun, HUANG Jiangze. Seismic Responses Analysis of Train-Track-Bridge System Considering Pile-Soil Interaction[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 229-237. doi: 10.3969/j.issn.0258-2724.20190694
Citation: LEI Hujun, HUANG Jiangze. Seismic Responses Analysis of Train-Track-Bridge System Considering Pile-Soil Interaction[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 229-237. doi: 10.3969/j.issn.0258-2724.20190694

Seismic Responses Analysis of Train-Track-Bridge System Considering Pile-Soil Interaction

doi: 10.3969/j.issn.0258-2724.20190694
  • Received Date: 17 Jul 2019
  • Rev Recd Date: 27 Sep 2019
  • Available Online: 11 Dec 2019
  • Publish Date: 15 Apr 2021
  • Understanding the influence of pile-soil interaction on seismic responses of a train-bridge system is necessary for studying the safety of trains running over high-speed railway bridges under earthquake. Based on the train-track-bridge coupled vibration theory, the Winkler foundation beam is used to simulate the pile group foundation and spring parameters are calculated by m method. A complete train-track-bridge-pile group coupled vibration model with seismic excitations is established, and a simulation analysis program is developed. Taking a (88 + 168 + 88) m prestressed concrete continuous rigid frame bridge as an example, a pile group foundation model considering pile-soil interaction, a rigid foundation model and an elastic foundation model are established respectively, and the last two models are used for comparison with the first one. By inputting three typical seismic waves, the coupled vibration responses of the three models are calculated and compared, and the pile-soil interaction is studied. The results show that the influence of pile-soil interaction on the lateral dynamic responses of the bridge, track and train subsystems under earthquake is greater than that on the vertical one, and the influence on the dynamic responses of the bridge and track subsystems is greater than that of the train subsystem. For the calculation conditions of this paper, the dynamic responses of bridge, track and train subsystems will be smaller if pile-soil interaction is not considered; specifically, the derailment coefficient, wheel load reduction rate and wheel-axle lateral force of the train are 5.8%, 8.6% and 9.0% smaller, respectively. Besides, the influence of pile-soil interaction on the safety index of the train will not change with the train speed. The obtained results can provide reference for the seismic design of high-speed railway bridges in earthquake areas.

     

  • YANG Y B, WU Y S. Dynamic stability of trains moving over bridges shaken by earthquakes[J]. Journal of Sound and Vibration, 2002, 258(1): 65-94. doi: 10.1006/jsvi.2002.5089
    XIA H, HAN Y, ZHANG N, et al. Dynamic analysis of train-bridge system subjected to non-uniform seismic excitations[J]. Earthquake Engineering & Structural Dynamics, 2006, 35(12): 1563-1579.
    JIN Z B, PEI S L, LI X Z, et al. Effect of vertical ground motion on earthquake-induced derailment of railway vehicles over simply-supported bridges[J]. Journal of Sound and Vibration, 2016, 383: 277-294. doi: 10.1016/j.jsv.2016.06.048
    江博君,冼巧玲,周福霖. 桩土效应对高铁桥梁地震反应的影响分析[J]. 广州大学学报(自然科学版),2016,15(1): 57-63.

    JIANG Bojun, XIAN Qiaoling, ZHOU Fulin. The influence analysis of the effect of pile-soil contact on the seismic response of the high speed railway bridge[J]. Journal of Guangzhou University (Natural Science Edition), 2016, 15(1): 57-63.
    高昊,王君杰,苏俊省,等. 桩-土水平弹簧系数对桥梁地震反应影响的参数分析[J]. 振动与冲击,2017,36(14): 156-167.

    GAO Hao, WANG Junjie, SU Junsheng, et al. Parameter analysis on the influence of soil-pile horizontal spring coefficient on the seismic response of bridges[J]. Joural of Vibration and Shock, 2017, 36(14): 156-167.
    MAKRIS N, TAZOH T, YUN X, et al. Prediction of the measured response of a scaled soil-pile-superstructure system[J]. Soil Dynamics & Earthquake Engineering, 1997, 16(2): 113-124.
    韦晓,范立础,王君杰. 考虑桩-土-桥梁结构相互作用振动台试验研究[J]. 土木工程学报,2002,35(4): 91-97. doi: 10.3321/j.issn:1000-131X.2002.04.017

    WEI Xiao, FAN Lichu, WANG Junjie. Shake table test on soil-pile-structure interaction[J]. China Civil Engineering Journal, 2002, 35(4): 91-97. doi: 10.3321/j.issn:1000-131X.2002.04.017
    谢文,孙利民. 桩-土-斜拉桥动力相互作用体系振动反应特性试验研究[J]. 岩土工程学报,2019,41(7): 1319-1328.

    XIE Wen, SUN Limin. Experimental studies on seismic response characteristics of pile-soil-cable-stayed bridge dynamic interaction system[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1319-1328.
    熊辉,谷亚东. 基于高速列车振动荷载的桩-土-结构相互作用分析[J]. 铁道科学与工程学报,2019,16(2): 302-309.

    XIONG Hui, GU Yadong. Pile-soil structure interaction analysis based on high-speed train vibration load[J]. Journal of Railway Science and Engineering, 2019, 16(2): 302-309.
    边学成. 高速列车荷载作用下高架桥和地基振动分析[J]. 振动工程学报,2006,19(4): 438-445. doi: 10.3969/j.issn.1004-4523.2006.04.002

    BIAN Xuecheng. Analysis of viaduct-ground vibrations due to high-speed train moving loads[J]. Journal of Vibration Engineering, 2006, 19(4): 438-445. doi: 10.3969/j.issn.1004-4523.2006.04.002
    李忠献,黄健,张媛,等. 地震作用对轻轨铁路车桥系统耦合振动的影响[J]. 地震工程与工程振动,2005,25(6): 183-188. doi: 10.3969/j.issn.1000-1301.2005.06.031

    LI Zhongxian, HUANG Jian, ZHANG Yuan, et al. Influence of seismic excitation on coupled vibration of train-bridge system in light railway[J]. Earthquake Engineering and Engineering Vibration, 2005, 25(6): 183-188. doi: 10.3969/j.issn.1000-1301.2005.06.031
    李小珍,刘孝寒,刘德军. 考虑桩-土相互作用的连续刚构桥车桥耦合振动分析[J]. 振动与冲击,2011,30(12): 54-58. doi: 10.3969/j.issn.1000-3835.2011.12.011

    LI Xiaozhen, LIU Xiaohan, LIU Dejun. Coupled vibration analysis of a railway coutinuous rigid-frame bridge and vehicles with soil-structure interaction[J]. Joural of Vibration and Shock, 2011, 30(12): 54-58. doi: 10.3969/j.issn.1000-3835.2011.12.011
    陈令坤,蒋丽忠,陶磊,等. 考虑桩-土作用的高速列车-桥梁地震响应分析[J]. 岩土力学,2012,33(10): 3162-3170.

    CHEN Lingkun, JIANG Lizhong, TAO Lei, et al. Seismic response analysis of high-speed vehicle-bridge considering soil-structure interaction[J]. Rock and Soil Mechanics, 2012, 33(10): 3162-3170.
    乔宏,夏禾,杜宪亭. 考虑桩土相互作用的车桥耦合动力分析[J]. 振动与冲击,2018,37(3): 105-111.

    QIAO Hong, XIA He, DU Xianting. Dynamic analysis for a train-bridge coupled system considering soil-pile interaction[J]. Journal of Vibration and Shock, 2018, 37(3): 105-111.
    雷虎军. 非一致地震激励下列车-轨道-桥梁耦合振动及行车安全性研究[D]. 成都: 西南交通大学, 2014.
    翟婉明, 夏禾. 列车-轨道-桥梁动力相互作用理论与工程应用[M]. 北京: 科学出版社, 2011: 32-88.
    雷虎军,李小珍. 非一致地震激励下列车-轨道-桥梁耦合振动模型[J]. 西南交通大学学报,2013,48(5): 803-809. doi: 10.3969/j.issn.0258-2724.2013.05.004

    LEI Hujun, LI Xiaozhen. Dynamic model for train-track-bridge coupling system subjected to non-uniform seismic excitation[J]. Journal of Southwest Jiaotong University, 2013, 48(5): 803-809. doi: 10.3969/j.issn.0258-2724.2013.05.004
    ZHAI W M. Two simple fast integration methods for large scale dynamic problems in engineering[J]. International Journal for Numerical Methods in Engineering, 1996, 39(24): 4199-4214. doi: 10.1002/(SICI)1097-0207(19961230)39:24<4199::AID-NME39>3.0.CO;2-Y
    国家铁路局. 铁路桥涵地基和基础设计规范: TB 10093—2017[S]. 北京: 中国铁道出版社, 2017.
    李永乐,赵凯,蔡宪棠. 桥梁基础刚度有限元模拟的正交三梁模型[J]. 桥梁建设,2010(6): 17-20.

    LI Yongle, ZHAO Kai, CAI Xiantang. Three orthogonal-beam model for finite element simulation of bridge foundation stiffness[J]. Bridge Construction, 2010(6): 17-20.
    LI X Z, ZHANG Z J, ZHANG X. Using elastic bridge bearings to reduce train-induced ground vibrations:An experimental and numerical study[J]. Soil Dynamics & Earthquake Engineering, 2016, 85: 78-90.
    冀昆,温瑞智,任叶飞,等. 我国抗震规范时程分析中地震动的输入数量[J]. 西南交通大学学报,2020,55(4): 743-751.

    JI Kun, WEN Ruizhi, REN Yefei, et al. Number of earthquake ground motion inputs for time-history analysis of seismic design code in china[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 743-751.
    李小珍,刘鸣,杨得海,等. 大跨度上承式钢桁架拱桥的地震损伤演化模拟[J]. 西南交通大学学报,2020,55(6): 1207-1214,1223.

    LI Xiaozhen, LIU Ming, YANG Dehai, et al. Seismic damage evolution simulation of long-span deck steel truss arch bridge[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1207-1214,1223.
  • Relative Articles

    [1]BU Xiumeng, WANG Lidong, LI Qingrong, HU Peng, HAN Yan. Influence Analysis of Vibration Control Parameters for High-Speed Maglev Train-Bridge Coupling[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 848-857, 866. doi: 10.3969/j.issn.0258-2724.20230534
    [2]HE Jiajun, XIANG Huoyue, LONG Junting, LI Yongle. Wind-Resistant Safety Analysis of High-Speed Trains Passing Through Bridge-Tunnel Transition[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 1056-1064. doi: 10.3969/j.issn.0258-2724.20190623
    [3]GOU Hongye, SHI Xiaoyu, ZHOU Wen, KANG Rui. Coupled Train-Bridge Vibration and Dynamic Characteristics of Long-Span T-Shaped Rigid Frame Railway Bridge[J]. Journal of Southwest Jiaotong University, 2018, 53(4): 679-686. doi: 10.3969/j.issn.0258-2724.2018.04.003
    [4]CUI Sheng'ai, LIU Pin, CAO Yibin, SU Jiao, ZHU Bing. Simulation Study on Multiline Vehicle-Bridge Coupled Vibration[J]. Journal of Southwest Jiaotong University, 2017, 30(5): 835-843. doi: 10.3969/j.issn.0258-2724.2017.05.001
    [5]LI Tao, JIANG Yonghua, ZHU Lianhua, GUAN Chenlong. A Novel Method for Calculating Stress and Deformation of Supporting Pile Considering Pile-Soil Interaction[J]. Journal of Southwest Jiaotong University, 2016, 29(1): 14-21. doi: 10.3969/j.issn.0258-2724.2016.01.003
    [6]LEI Hujun, LI Xiaozhen. Dynamic Model for Train-Track-Bridge Coupling System Subjected to Non-uniform Seismic Excitation[J]. Journal of Southwest Jiaotong University, 2013, 26(5): 803-809. doi: 10.3969/j.issn.0258-2724.2013.05.004
    [7]LIU Quanmin, LI Xiaozhen, ZHANG Xun, ZHANG Zhijun, LI Yadong. Stiffness Transition Analysis of a Steel-Concrete Joint Section Based on Vehicle-Bridge Interaction[J]. Journal of Southwest Jiaotong University, 2013, 26(5): 810-817. doi: 10.3969/j.issn.0258-2724.2013.05.005
    [8]WANG Shao-Lin, ZHAI Wan-Meng. Dynamic Responses of High-Speed Train-Track-Bridge System under Seismic Excitations[J]. Journal of Southwest Jiaotong University, 2011, 24(1): 56-63. doi: 10.3969/j.issn.0258-2724.2011.01.009
    [9]CHE Mao-Ru, ZHANG Wei-Hua, JIN Hua-Song, Shu-Min-Hao, . Influences ofW heelsetM isalignment on Running Safety ofRailway Vehicles[J]. Journal of Southwest Jiaotong University, 2010, 23(1): 12-16. doi: 10. 3969/.j issn. 0258-2724. 2
    [10]CUI Shengai, ZHU Bing. Coupling Vibration Simulation of Long-Span Continuous Beam Bridge on Passenger Dedicated Railway[J]. Journal of Southwest Jiaotong University, 2009, 22(1): 66-71.
    [11]MA Jibing, PU Qianhui, HUO Xuejin. Vehicle-Bridge Coupling Vibration Analysis of PC Rail Beam of Straddle-Type Monorail Transportation[J]. Journal of Southwest Jiaotong University, 2009, 22(6): 806-811,829.
    [12]SHAN De-shan, LI Qiao. Coupled Vibration Analysis of X-Style Arch Bridge and Vehicles[J]. Journal of Southwest Jiaotong University, 2005, 18(1): 53-58.
    [13]XIAOXin-biao, SHENHuo-ming. Comparison of Three Models for Vehicle-Bridge Coupled Vibration Analysis[J]. Journal of Southwest Jiaotong University, 2004, 17(2): 172-175.
    [14]LOU Yi-hong, PENG Jun-sheng. Analysis of Pile-Subsoil Interaction with Sand-Box Model Test and Calculation[J]. Journal of Southwest Jiaotong University, 2003, 16(2): 164-168.
    [15]WANGJian-xiu, YANGLi-zhong, HEJing. The Coupling Interaction of Groundwater-Soil-Rock Mass in Karst Collapse Evolution[J]. Journal of Southwest Jiaotong University, 2001, 14(3): 314-317.
    [16]SHENAi-guo. Calculation of the Free Vibration Characteristics of Soil-Construction Interaction System[J]. Journal of Southwest Jiaotong University, 2000, 13(1): 7-10.
    [17]LiXiaozhen, QiangShizhong. Coupling Vibration Analysis for Long Span Steel Cable- Stayed Bridge Crossing over Yangtze River at Nanjing on Beijing-Shanghai High-Speed Railway[J]. Journal of Southwest Jiaotong University, 1999, 12(2): 153-157.
  • Cited by

    Periodical cited type(8)

    1. 周子骥,张楠,严国兵. 方幂好格子点法在车-桥系统随机动力分析的应用. 西南交通大学学报. 2025(02): 524-532 . 本站查看
    2. 邬歆. 桩土相互作用对桥轨系统近场脉冲地震响应的影响分析. 结构工程师. 2024(03): 61-67 .
    3. 武隽,杨铭,董凯,苗通,董志兴. 地震和列车作用下地铁高架桥的振动特征. 武汉理工大学学报(交通科学与工程版). 2023(01): 132-136 .
    4. 雷虎军,陈奕涵,朱广平. 地震诱发沙土液化对高速铁路车桥系统动力响应的影响分析. 振动与冲击. 2022(13): 195-203 .
    5. 王栋. 高速铁路高低塔斜拉桥抗震性能研究. 铁道标准设计. 2022(10): 104-111 .
    6. 勾红叶,彭烨,李梁,王君明,蒲黔辉. 地震作用下铁路双层结合钢桁混合刚构桥行车安全性. 交通运输工程学报. 2022(06): 193-206 .
    7. 中国桥梁工程学术研究综述·2021. 中国公路学报. 2021(02): 1-97 .
    8. 乔宏,戴祖豪,龙佩恒,王辰羽. 高速铁路桥梁群桩基础动力阻抗影响因素分析. 科学技术与工程. 2021(26): 11343-11348 .

    Other cited types(10)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-062025-0705101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 40.1 %FULLTEXT: 40.1 %META: 56.9 %META: 56.9 %PDF: 3.1 %PDF: 3.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.2 %其他: 5.2 %其他: 0.5 %其他: 0.5 %Central District: 0.6 %Central District: 0.6 %China: 0.2 %China: 0.2 %[]: 1.0 %[]: 1.0 %上海: 0.8 %上海: 0.8 %东莞: 0.2 %东莞: 0.2 %临汾: 0.3 %临汾: 0.3 %兰州: 0.3 %兰州: 0.3 %北京: 3.9 %北京: 3.9 %南京: 0.2 %南京: 0.2 %厦门: 0.2 %厦门: 0.2 %台州: 0.2 %台州: 0.2 %合肥: 0.3 %合肥: 0.3 %哈尔滨: 1.1 %哈尔滨: 1.1 %哥伦布: 0.2 %哥伦布: 0.2 %嘉兴: 0.2 %嘉兴: 0.2 %大连: 1.1 %大连: 1.1 %天津: 0.2 %天津: 0.2 %宁波: 0.3 %宁波: 0.3 %宣城: 0.8 %宣城: 0.8 %山景城: 0.2 %山景城: 0.2 %常州: 0.2 %常州: 0.2 %张家口: 4.8 %张家口: 4.8 %成都: 6.5 %成都: 6.5 %扬州: 0.3 %扬州: 0.3 %池州: 0.6 %池州: 0.6 %沈阳: 0.3 %沈阳: 0.3 %漯河: 0.3 %漯河: 0.3 %石家庄: 1.3 %石家庄: 1.3 %芒廷维尤: 14.1 %芒廷维尤: 14.1 %芝加哥: 0.6 %芝加哥: 0.6 %莆田: 0.2 %莆田: 0.2 %西宁: 47.2 %西宁: 47.2 %诺沃克: 0.3 %诺沃克: 0.3 %贵阳: 0.2 %贵阳: 0.2 %运城: 1.0 %运城: 1.0 %邯郸: 0.2 %邯郸: 0.2 %郑州: 0.6 %郑州: 0.6 %重庆: 0.2 %重庆: 0.2 %长沙: 2.7 %长沙: 2.7 %青岛: 0.6 %青岛: 0.6 %其他其他Central DistrictChina[]上海东莞临汾兰州北京南京厦门台州合肥哈尔滨哥伦布嘉兴大连天津宁波宣城山景城常州张家口成都扬州池州沈阳漯河石家庄芒廷维尤芝加哥莆田西宁诺沃克贵阳运城邯郸郑州重庆长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(5)

    Article views(673) PDF downloads(24) Cited by(18)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return