• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 27 Issue 5
Oct.  2014
Turn off MathJax
Article Contents
QIAO Hong, XIA He, DU Xianting. Analytical Method for Calculating Dynamic Response of Coupled Train-Bridge System Based on Duhamel Integral[J]. Journal of Southwest Jiaotong University, 2014, 27(5): 766-771. doi: 10.3969/j.issn.0258-2724.2014.05.004
Citation: QIAO Hong, XIA He, DU Xianting. Analytical Method for Calculating Dynamic Response of Coupled Train-Bridge System Based on Duhamel Integral[J]. Journal of Southwest Jiaotong University, 2014, 27(5): 766-771. doi: 10.3969/j.issn.0258-2724.2014.05.004

Analytical Method for Calculating Dynamic Response of Coupled Train-Bridge System Based on Duhamel Integral

doi: 10.3969/j.issn.0258-2724.2014.05.004
  • Received Date: 03 Jan 2014
  • Publish Date: 25 Oct 2014
  • In order to shorten the computation time of solving the dynamic response of a coupled train-bridge system, the modal decomposition method is used to decompose the train subsystem and bridge subsystem in the coupled system. Assuming that the vehicle-bridge interaction forces change linearly within each time step, the dynamic response of the system during this period is obtained by Duhamel integral. Based on this theory, a new method is proposed to analyze the dynamic response of the coupled train-bridge system. The proposed method is then used to analyze a 4-axle train passing through a 32 m simply-supported beam at a constant speed. The results show that the dynamic responses obtained by the proposed method for the coupled train-bridge system are very close to those obtained by the Newmark-β method, and the relative error at every extreme points is less than 1%. Compared with the Newmark-β method, the proposed method can increase the time interval of integration by at least 5-10 times while ensuring the precision.

     

  • loading
  • XIA H, DE ROECK G, GOICOLEA J M. Bridge vibration and controls: new research[M]. New York: Nova Science Publishers Inc., 2011: 15-65.
    翟婉明. 车辆-轨道耦合动力学[M]. 北京:科学出版社,2007: 1-11,116-133.
    翟婉明,夏禾. 列车-轨道-桥梁动力相互作用理论与工程应用[M]. 北京:科学出版社,2011: 8-23.
    杜宪亭. 强地震作用下大跨度桥梁空间动力效应及列车运行安全研究. 北京:北京交通大学,2011.
    夏禾,张楠. 车辆与结构相互作用[M]. 北京:科学出版社,2005: 11-29,88-92.
    马继兵,蒲黔辉,霍学晋. 跨座式单轨交通PC轨道梁车桥耦合振动分析[J]. 西南交通大学学报,2009,44(6): 806-811,829. MA Jibing, PU Qianhui, HUO Xuejin. Vehicle-bridge coupling vibration analysis of PC rail beam of straddle-type monorail transportation[J]. Journal of Southwest Jiaotong University, 2009, 44(6): 806-811, 829.
    李小珍,马文彬,强士中. 车桥系统耦合振动分析的数值解法[J]. 振动与冲击,2002,21(3): 21-25. LI Xiaozhen, MA Wenbin, QIANG Shizhong. Coupling vibration analysis of vehicle-bridge system by iterative solution method[J]. Journal of Vibration and Shock, 2002, 21(3): 21-25.
    李奇,吴定俊,邵长宇. 考虑车体柔性的车桥耦合系统建模与分析方法[J]. 振动工程学报,2011,24(1): 41-47. LI Qi, WU Dingjun, SHAO Changyu. Modeling and dynamic analysis method of vehicle-bridge coupling system considering car-body flexibility[J]. Journal of Vibration Engineering, 2011, 24(1): 41-47.
    YANG Y B, LIN B H. Vehicle-bridge interaction analysis by dynamic condensation method[J]. Structure Engineering ASCE, 1995, 121(11): 1636-1643.
    沈火明,肖新标. 求解车桥耦合振动问题的一种数值方法[J]. 西南交通大学学报,2003,38(6): 658-662. SHEN Huoming, XIAO Xinbiao. Numerical method for vehicle-bridge coupled vibrations[J]. Journal of Southwest Jiaotong University, 2003, 38(6): 658-662.
    ZHAI W M. Two simple fast integration methods for large-scale dynamic problems in engineering[J]. International Journal for Numerical Methods in Engineering, 1996, 39(4): 4199-4214.
    翟婉明. 非线性结构动力分析的Newmark预测-校正积分模式[J]. 计算结构力学及其应用,1990,7(2): 51-58. ZHAI Wanming. The predictor-corrector scheme based on the Newmarks integration algorithm for nonlinear structural dynamic analyses[J]. Chinese Journal of Computational Mechanics, 1990, 7(2): 51-57.
    张纯,胡振东,仲政. 车桥耦合振动分析的Haar小波方法[J]. 振动与冲击,2007,26(4): 77-80. ZHANG Chun, HU Zhendong, ZHONG Zheng. Vibration analysis for vehicle/bridge interacation by Haar wavelet method[J]. Journal of Vibration and Shock, 2007, 26(4): 77-80.
    杜宪亭,夏禾,张田,等. 基于精细Runge-Kutta混合积分法的车桥耦合振动非迭代求解算法[J]. 振动与冲击,2013,32(13): 39-42,55. DU Xianting, XIA He, ZHANG Tian, et al. Non-iterative solving algorithm for coupled vibration of a train-bridge system based on precise Runge-Kutta hybrid integration method[J]. Journal of Vibration and Shock, 2013, 32(13): 39-42, 55.
    CLOUGH R W, PENZIEN J. Dynamics of structures[M]. 3rd ed. New York: Computers and Structures Inc., 1995: 87-96.
    BATHE K J. Finite element procedures in engineering analysis[M]. : Prentice-Hall Inc., 1982: 801-815.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(940) PDF downloads(580) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return