• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
HUANG Hongying, GUAN Huisheng, MU Guowang, LUO Yi, XIE Yuan. Cutter Layout on Special-Shaped Cutterhead for Shaft Boring Machine[J]. Journal of Southwest Jiaotong University, 2025, 60(3): 704-713, 730. doi: 10.3969/j.issn.0258-2724.20230496
Citation: HUANG Hongying, GUAN Huisheng, MU Guowang, LUO Yi, XIE Yuan. Cutter Layout on Special-Shaped Cutterhead for Shaft Boring Machine[J]. Journal of Southwest Jiaotong University, 2025, 60(3): 704-713, 730. doi: 10.3969/j.issn.0258-2724.20230496

Cutter Layout on Special-Shaped Cutterhead for Shaft Boring Machine

doi: 10.3969/j.issn.0258-2724.20230496
  • Received Date: 26 Sep 2023
  • Rev Recd Date: 26 Feb 2024
  • Available Online: 18 Jul 2024
  • Publish Date: 02 Mar 2024
  • In order to solve the problem of difficult cutter layout on a W-shaped cutterhead for a shaft boring machine, the influence of cutter installation and arrangement parameters on the rock breaking effect of cutters was studied based on the discrete element method, and the overall layout optimization scheme of cutters was obtained by particle swarm optimization algorithm. Firstly, the two-dimensional discrete element model of the cooperative rock breaking of cutters at the depression area and the conical surface of the tunnel face was established, respectively. Then, the cooperative rock breaking effect of cutters with different cutter spacing at the depression area was studied, and the influence of different cutter spacing and tilt angles at the conical surface on the rock breaking condition, cutter load, and rock breaking efficiency was revealed. The reasonable cutter spacing and tilt angle at the conical surface were obtained by taking the specific energy of rock breaking as the index. Finally, it was found that the star-shaped layout was suitable for cutters on the special-shaped cutterhead, and the particle swarm optimization algorithm was used to optimize the cutter layout scheme. The results show that cutter spacing of cutters should be reduced at the depression area of the phyllite strata. When cutters on the special-shaped cutterhead at the conical surface adopt the vertical conical installation method, the rock breaking efficiency is higher. After the optimization of the cutter layout, the radial load of the special-shaped cutterhead is reduced by 24.07%, and the resultant moment of the cutterhead is reduced by 40.83%. The research results can provide a reference for cutter layout on the special-shaped cutterhead in shaft engineering.

     

  • [1]
    徐辉东,刘林林,付新鹏. 竖井全断面机械破岩装备技术现状及发展方向[J]. 建井技术,2020,41(6): 51-57.

    XU Huidong, LIU Linlin, FU Xinpeng. Technology status and development of vertical shaft full-face mechanical rock cutting equipment[J]. Mine Construction Technology, 2020, 41(6): 51-57.
    [2]
    刘志强,宋朝阳,程守业,等. 千米级竖井全断面科学钻进装备与关键技术分析[J]. 煤炭学报,2020,45(11): 3645-3656.

    LIU Zhiqiang, SONG Zhao Yang, CHENG Shouye, et al. Equipment and key technologies for full-section scientifically drilling of kilometer-level vertical shafts[J]. Journal of China Coal Society, 2020, 45(11): 3645-3656.
    [3]
    刘志强. 竖井掘进机凿井技术[M]. 北京:煤炭工业出版社,2018:52-60.
    [4]
    KANG Y Q, YANG R S, YANG L Y, et al. Theoretical and numerical studies of rock breaking mechanism by double disc cutters[J]. International Journal of Mining Science and Technology, 2023, 33(7): 815-828. doi: 10.1016/j.ijmst.2023.03.006
    [5]
    刘立鹏,刘海舰,傅睿智,等. TBM双滚刀间距及入岩次序对破岩效果影响研究[J]. 水利水电技术,2018,49(4): 56-62.

    LIU Lipeng, LIU Haijian, FU Ruizhi, et al. Study on influencesfrom spacing between dual-disc cutters and rock-penetrating sequence of TBM on rock-breaking effect[J]. Water Resources and Hydropower Engineering, 2018, 49(4): 56-62.
    [6]
    ZHANG Z Q, ZHANG K J, DONG W J, et al. Study of rock-cutting process by disc cutters in mixed ground based on three-dimensional particle flow model[J]. Rock Mechanics and Rock Engineering, 2020, 53(8): 3485-3506. doi: 10.1007/s00603-020-02118-y
    [7]
    CHO J W, JEON S, JEONG H Y, et al. Evaluation of cutting efficiency during TBM disc cutter excavation within a Korean granitic rock using linear-cutting-machine testing and photogrammetric measurement[J]. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 2013, 35: 37-54.
    [8]
    CHANG S H, CHOI S W, BAE G J, et al. Performance prediction of TBM disc cutting on granitic rock by the linear cutting test[J]. Tunnelling and Underground Space Technology, 2006, 21(3/4): 271-271.
    [9]
    宁向可,耿麒,卢智勇,等. 全断面隧道掘进机锥面刀盘滚刀破岩机制研究[J]. 现代隧道技术,2023,60(2): 73-83.

    NING Xiangke, GENG Qi, LU Zhiyong, et al. A study on the rock-breaking mechanism of disc cutters on cone cutterhead of full-face tunnel boring machines[J]. Modern Tunnelling Technology, 2023, 60(2): 73-83.
    [10]
    薛亚东,周杰,赵丰,等. 基于MatDEM的TBM滚刀破岩机理研究[J]. 岩土力学,2020,41(增1): 337-346.

    XUE Yadong, ZHOU Jie, ZHAO Feng, et al. Study on rock breaking mechanism of TBM hob based on MatDEM[J]. Rock and Soil Mechanics, 2020, 41(S1): 337-346.
    [11]
    张蒙祺,王一博,章龙管,等. 不同岩石和围压下刃形对滚刀破岩性能的影响[J]. 西南交通大学学报,2023,58(2): 332-339.

    ZHANG Mengqi, WANG Yibo, ZHANG Longguan, et al. Effects of TBM cutter profile on rock fragmentation under different rock type and confining pressure conditions[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 332-339.
    [12]
    吴永胜,谭忠盛,喻渝,等. 川西北茂县群千枚岩各向异性力学特性[J]. 岩土力学,2018,39(1): 207-215.

    WU Yongsheng, TAN Zhongsheng, YU Yu, et al. Anisotropically mechanical characteristics of Maoxian Group phyllite in northwest of Sichuan Province[J]. Rock and Soil Mechanics, 2018, 39(1): 207-215.
    [13]
    帅攀,赵伟华,周怡劼. 千枚岩倾倒变形岩体饱水软化效应试验研究[J]. 地下水,2023,45(2): 8-12.
    [14]
    管会生. 工程机械理论与设计[M]. 成都:西南交通大学出版社,2020:12-13.
    [15]
    宋纯宁. 基于对称与不对称刀具下的TBM刀盘力学性能分析[D]. 北京:华北电力大学,2020.
    [16]
    冯欢欢,陈馈,周建军,等. 掘进机滚刀最优破岩刀间距的分析与计算[J]. 现代隧道技术,2014,51(3): 124-130,137.

    FENG Huanhuan, CHEN Kui, ZHOU Jianjun, et al. Analysis and calculation of optimum TBM disc cutter spacing[J]. Modern Tunnelling Technology, 2014, 51(3): 124-130,137.
    [17]
    徐飞. 炭质千枚岩隧道围岩流变机制与让抗耦合支护结构研发及工程应用[D]. 济南:山东大学,2017.
    [18]
    黄薇,闫治涛,孙峰,等. 层状页岩巴西劈裂破坏特征颗粒流模拟研究[J]. 山东科技大学学报(自然科学版),2022,41(6): 74-82.

    HUANG Wei, YAN Zhitao, SUN Feng, et al. Particle flow simulation of Brazilian splitting failure characteristics of layered shale[J]. Journal of Shandong University of Science and Technology (Natural Science), 2022, 41(6): 74-82.
    [19]
    孔晓璇,刘泉声,赵怡凡,等. 节理倾角对岩石隧道掘进机破岩特性影响的数值研究[J]. 煤炭学报,2015,40(6): 1257-1262.

    KONG Xiaoxuan, LIU Quansheng, ZHAO Yifan, et al. Numerical simulation on the effect of joint orientation on rock fragmentation by TBM disc cutters[J]. Journal of China Coal Society, 2015, 40(6): 1257-1262.
    [20]
    ROSTAMI J, OZDEMIR L. A new model for performance prediction of hard rock TBMs[C]// Proceedomgs of Rapid Excavation and Tunneling Conference (RETC). Boston: [s.n.], 1993: 793-809.
    [21]
    张宏图,杨耀浦,刘勇,等. 低压磨料空气射流切槽辅助TBM滚刀破岩规律研究[J]. 煤炭学报,2023,11(12): 1-12.
    [22]
    王鹏. 岩石脆性对镐型截齿破岩比能耗的影响[J]. 价值工程,2017,36(21): 155-156.

    WANG Peng. Effects of rock brittleness on specific energy of rock cutting using the conical pick[J]. Value Engineering, 2017, 36(21): 155-156.
    [23]
    张照煌,乔永立. 全断面岩石掘进机盘形滚刀布置规律研究[J]. 工程力学,2011,28(5): 172-177.

    ZHANG Zhaohuang, QIAO Yongli. Research on the layout of tbm disc cutter[J]. Engineering Mechanics, 2011, 28(5): 172-177.
    [24]
    SHI Y, EBERHART R. A modified particle swarm optimizer[C]//1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No. 98TH8360). Anchorage: IEEE, 2002: 69-73.
    [25]
    SUN H Y, GUO W, LIU J Q, et al. Layout design for disc cutters based on analysis of TBM cutter-head structure[J]. Journal of Central South University, 2018, 25(4): 812-830. doi: 10.1007/s11771-018-3786-8
    [26]
    乔金丽,孟秋杰,刘建琴,等. 基于等摩擦耗能的滚刀多目标优化布局[J]. 地下空间与工程学报,2020,16(2): 531-539.

    QIAO Jinli, MENG Qiujie, LIU Jianqin, et al. Multi-objective optimization design of disc cutter layout based on balanced friction energy consumption[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(2): 531-539.
  • Relative Articles

    [1]WANG Xuejun, YANG Hanxiong. Prediction of Discrete Element Breakage Parameter for Ballast Particles Based on Genetic Algorithm–Back Propagation Neural Network Model[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240069
    [2]CHEN Cheng, TANG Yuyan, TANG Zian, ZHANG Lei, YANG Chao. Bearing Characteristics of X-Shaped Sleeper Based on Scaled Test and Discrete Element Simulation[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230590
    [3]CHEN Cheng, RAO Wenjin, LI Wenjun, ZHANG Lei, TANG Yuyan. Maintenance Mechanism of Ballast Tamping and Stone-Blowing Using Discrete Element Method[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 256-263, 306. doi: 10.3969/j.issn.0258-2724.20220171
    [4]CUI Kai, CI Wei, YANG Shangchuan. Influence of Sand Sampling Method on Bearing Capacity Calculation of Shallow Foundation in Discrete Element Method[J]. Journal of Southwest Jiaotong University, 2023, 58(3): 575-583. doi: 10.3969/j.issn.0258-2724.20210620
    [5]ZHANG Mengqi, WANG Yibo, ZHANG Longguan, DUAN Wenjun, SU Yemao, MO Jiliang, ZHOU Zhongrong. Effects of TBM Cutter Profile on Rock Fragmentation Under Different Rock Type and Confining Pressure Conditions[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 332-339. doi: 10.3969/j.issn.0258-2724.20210171
    [6]ZHENG Jing, LIU Yicheng, ZHANG Hao, YANG Dan, LI Kezhou. Analysis of Electrosurgical Unit Parameters on Sealing Effect of Porcine Pancreatic Duct[J]. Journal of Southwest Jiaotong University, 2022, 57(2): 245-252. doi: 10.3969/j.issn.0258-2724.20200391
    [7]CHEN Long, WU Shunchuan, JIN Aibing. Particle Discrete Element Layered Modeling Method and Particle Size Effect[J]. Journal of Southwest Jiaotong University, 2022, 57(5): 1086-1095. doi: 10.3969/j.issn.0258-2724.20210023
    [8]ZHANG Huailiang, ZHAO Lina, ZHOU Jingxing. Design Method of Hydraulic Valve Block for Tunnel Boring Machine[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 52-59. doi: 10.3969/j.issn.0258-2724.20180072
    [9]YANG Jihua, YAN Changbin. Wear Predication of Tunnel Boring Machine Cutters Based on In-situ Measured Data[J]. Journal of Southwest Jiaotong University, 2019, 54(6): 1283-1292. doi: 10.3969/j.issn.0258-2724.20170677
    [10]WANG Jun, LIN Guojin, TANG Xie, HE Chuan. Face Stability Analysis of Shield Tunnel in Sandy Ground Using 3D DEM[J]. Journal of Southwest Jiaotong University, 2018, 53(2): 312-321. doi: 10.3969/j.issn.0258-2724.2018.02.013
    [11]JING Guoqing, HUANG Hongmei, SHI Xiaoyi, CAI Xiaopei. Triaxial Test and DEM Analysis of Ballast Aggregate with Angularity Breakage[J]. Journal of Southwest Jiaotong University, 2017, 30(2): 216-221. doi: 10.3969/j.issn.0258-2724.2017.02.002
    [12]XIAO Hong, LING Xing. Experiment and DEM Analysis of Lateral Resistance of Glued Ballast[J]. Journal of Southwest Jiaotong University, 2017, 30(6): 1046-1054. doi: 10.3969/j.issn.0258-2724.2017.06.002
    [13]WANG Yusuo, LI Junjie, LI Zhenghui, FENG Gaofei, WU Hao, HE Junnan. Assessment of Rockfall Impact Force by Particle Flow Code Numerical Simulation Based on Discrete Element Model[J]. Journal of Southwest Jiaotong University, 2016, 29(1): 22-29. doi: 10.3969/j.issn.0258-2724.2016.01.004
    [14]ZHANG Xu, ZHAO Chunfa, ZHAI Wanming. Numerical Analysis of Static Crushed Behavior of Railway Ballast[J]. Journal of Southwest Jiaotong University, 2015, 28(1): 137-143. doi: 10.3969/j.issn.0258-2724.2015.01.020
    [15]XIAO Hong, GAO Liang, HOU Bowen. 3D Discrete Element Analysis of Selection of Sleeper Types on High-Speed Railway Bridge[J]. Journal of Southwest Jiaotong University, 2015, 28(5): 811-816. doi: 10.3969/j.issn.0258-2724.2015.05.007
    [16]GAO Liang, LUO Qi, XU Yang, JIANG Hanke, QU Cun. Effects of Ballast Bed Section Dimension on Its Lateral Resistance[J]. Journal of Southwest Jiaotong University, 2014, 27(6): 954-960. doi: 10.3969/j.issn.0258-2724.2014.06.004
    [17] , JING Guoqing, FENG Kun, GAO Liang, WANG Jun, . DEM Simulation of Ballast Degradation and Breakage under Cyclic Loading[J]. Journal of Southwest Jiaotong University, 2012, 25(2): 187-191. doi: 10.3969/j.issn.0258-2724.2012.02.003
    [18]DU Xin, ZENG Yawu, GAO Rui, YAN Jing, CAO Yuan. Effects of Particle Shape on Friction Mechanism Based on Discrete Element Method[J]. Journal of Southwest Jiaotong University, 2012, 25(2): 252-257. doi: 10.3969/j.issn.0258-2724.2012.02.014
    [19]GUAN Huisheng, GAO Bo. Theoretical Model for Estimation of Cutter Head Torque in Shield Tunneling[J]. Journal of Southwest Jiaotong University, 2008, 21(2): 213-217,226.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-062025-070102030405060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 27.8 %FULLTEXT: 27.8 %META: 66.2 %META: 66.2 %PDF: 6.0 %PDF: 6.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 14.5 %其他: 14.5 %其他: 0.8 %其他: 0.8 %China: 0.2 %China: 0.2 %Seattle: 0.2 %Seattle: 0.2 %上海: 0.8 %上海: 0.8 %佛山: 0.4 %佛山: 0.4 %兰州: 0.2 %兰州: 0.2 %北京: 1.5 %北京: 1.5 %十堰: 0.2 %十堰: 0.2 %南京: 2.5 %南京: 2.5 %南充: 0.2 %南充: 0.2 %南昌: 0.6 %南昌: 0.6 %南通: 0.2 %南通: 0.2 %合肥: 0.4 %合肥: 0.4 %哥伦布: 0.4 %哥伦布: 0.4 %圣地亚哥: 1.0 %圣地亚哥: 1.0 %大庆: 0.2 %大庆: 0.2 %天津: 1.5 %天津: 1.5 %太原: 0.2 %太原: 0.2 %孔敬: 0.6 %孔敬: 0.6 %宣城: 0.4 %宣城: 0.4 %常州: 0.2 %常州: 0.2 %常德: 0.6 %常德: 0.6 %平顶山: 0.2 %平顶山: 0.2 %开封: 0.2 %开封: 0.2 %张家口: 5.4 %张家口: 5.4 %徐州: 0.2 %徐州: 0.2 %德阳: 0.4 %德阳: 0.4 %成都: 1.7 %成都: 1.7 %扬州: 1.4 %扬州: 1.4 %新乡: 0.2 %新乡: 0.2 %昆明: 0.2 %昆明: 0.2 %桂林: 0.4 %桂林: 0.4 %池州: 1.0 %池州: 1.0 %沈阳: 0.4 %沈阳: 0.4 %洛阳: 0.6 %洛阳: 0.6 %淄博: 0.2 %淄博: 0.2 %深圳: 0.2 %深圳: 0.2 %温州: 0.8 %温州: 0.8 %漯河: 2.7 %漯河: 2.7 %盐城: 0.2 %盐城: 0.2 %石家庄: 3.9 %石家庄: 3.9 %芒廷维尤: 27.2 %芒廷维尤: 27.2 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.2 %苏州: 0.2 %蚌埠: 0.2 %蚌埠: 0.2 %衡阳: 0.2 %衡阳: 0.2 %西宁: 16.2 %西宁: 16.2 %西安: 0.2 %西安: 0.2 %诺沃克: 0.6 %诺沃克: 0.6 %遵义: 0.2 %遵义: 0.2 %邯郸: 0.4 %邯郸: 0.4 %郑州: 1.5 %郑州: 1.5 %重庆: 0.4 %重庆: 0.4 %镇江: 0.2 %镇江: 0.2 %长沙: 3.5 %长沙: 3.5 %青岛: 0.2 %青岛: 0.2 %鞍山: 0.2 %鞍山: 0.2 %马鞍山: 0.2 %马鞍山: 0.2 %黄冈: 0.2 %黄冈: 0.2 %黄石: 0.2 %黄石: 0.2 %其他其他ChinaSeattle上海佛山兰州北京十堰南京南充南昌南通合肥哥伦布圣地亚哥大庆天津太原孔敬宣城常州常德平顶山开封张家口徐州德阳成都扬州新乡昆明桂林池州沈阳洛阳淄博深圳温州漯河盐城石家庄芒廷维尤芝加哥苏州蚌埠衡阳西宁西安诺沃克遵义邯郸郑州重庆镇江长沙青岛鞍山马鞍山黄冈黄石

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(5)

    Article views(341) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return