• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Recommendations
Susceptibility assessment of collapses and landslides based on cluster and random forest coupled model
DU Yingjin et al., JOURNAL OF SOUTHWEST JIAOTONG UNIVERSITY, 2025
Rail grinding model based on mechanical-electric-hydraulic coupling
ZENG Luqing et al., JOURNAL OF SOUTHWEST JIAOTONG UNIVERSITY, 2025
Mechanical model of downhole debris flow mechanism based on key block theory
NIU Xiangdong et al., JOURNAL OF SOUTHWEST JIAOTONG UNIVERSITY, 2025
Simulation and analysis of chloride ion diffusion in cracked concrete based on cellular automata
MA Junjun et al., JOURNAL OF SOUTHWEST JIAOTONG UNIVERSITY, 2022
Optimization of dry compression molding process parameters for magnetic abrasive grains based on discrete element method
CUI Zihan et al., DIAMOND & ABRASIVES ENGINEERING, 2024
Model-driven analysis and prediction method of concrete deterioration damage in linxia area
MA Minghai et al., INTELLIGENT CITY, 2025
Prediction of dynamic deformation modulus of subgrade based on ga-xgboost model
LAI Jianping et al., JOURNAL OF HARBIN INSTITUTE OF TECHNOLOGY, 2025
Synthesize, structural inspection, stoichiometry in solution and dft calculation of some novel mixed ligand complexes: dna binding, biomedical applications and molecular docking approach
Abu-Dief, Ahmed M., JOURNAL OF MOLECULAR LIQUIDS, 2024
Evaluation of grinding media type using dem simulations with tavares breakage model
POWDER TECHNOLOGY
Fatigue life prediction for orthotropic steel bridge decks welds using a gaussian variational bayes network and small sample experimental data
RELIABILITY ENGINEERING & SYSTEM SAFETY
Powered by
WANG Xuejun, YANG Hanxiong. Prediction of Discrete Element Breakage Parameter for Ballast Particles Based on Genetic Algorithm–Back Propagation Neural Network Model[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240069
Citation: WANG Xuejun, YANG Hanxiong. Prediction of Discrete Element Breakage Parameter for Ballast Particles Based on Genetic Algorithm–Back Propagation Neural Network Model[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240069

Prediction of Discrete Element Breakage Parameter for Ballast Particles Based on Genetic Algorithm–Back Propagation Neural Network Model

doi: 10.3969/j.issn.0258-2724.20240069
  • Received Date: 31 Jan 2024
  • Rev Recd Date: 27 Apr 2024
  • Available Online: 21 Feb 2025
  • To optimize the deterioration assessment and maintenance of ballasted tracks, it is of great value to study the breakage process and mechanism of ballast particles. Through a uniaxial breakage test on the single ballast particle, the equivalent stress required for its failure was determined. The deformation behavior under load was analyzed based on the ballast particle breakage process and loading force. Laser grating scanning of the ballast particle geometry was performed, and a minimum bounding rectangle method was used for specification. Rigid blocks were used for ballast particle packing, and a comparison was made with the traditional spherical particle packing method. The breakage process of ballast particles constructed with rigid blocks and the initiation of microcracks within the ballast particles were analyzed. In addition, the discrete element contact parameters for ballast particles with different geometries were studied, and a neural network model optimized by a genetic algorithm, namely GA-BP was used to predict the bond strength for ballast particles with different equivalent particle sizes. The results show that in the discrete element model, the bond strength of the ballast particles increases with the increase in its equivalent particle sizes. Specifically, for equivalent particle sizes in the ranges of [25, 39), [39, 48), [48, 56), [56, 64), and [64, 80) mm, the corresponding average bond strengths are 151.85, 159.45, 166.71, 175.29, and 185.29 MPa, respectively.

     

  • [1]
    张徐, 赵春发, 翟婉明. 铁路碎石道砟静态压碎行为数值模拟[J]. 西南交通大学学报, 2015, 50(1): 137-143. doi: 10.3969/j.issn.0258-2724.2015.01.020

    ZHANG Xu, ZHAO Chunfa, ZHAI Wanming. Numerical analysis of static crushed behavior of railway ballast[J]. Journal of Southwest Jiaotong University, 2015, 50(1): 137-143. doi: 10.3969/j.issn.0258-2724.2015.01.020
    [2]
    YANG X, YU L Y, WANG X J, et al. Analysis of mesoscopic mechanical dynamic characteristics of ballast bed with under sleeper pads[J]. Railway Engineering Science, 2024, 32(1): 107-123. doi: 10.1007/s40534-023-00319-z
    [3]
    MCDOWELL G R, BOLTON M D. On the micromechanics of crushable aggregates[J]. Géotechnique, 1998, 48(5): 667-679.
    [4]
    INDRARATNA B, THAKUR P K, VINOD J S. Experimental and numerical study of railway ballast behavior under cyclic loading[J]. International Journal of Geomechanics, 2010, 10(4): 136-144. doi: 10.1061/(ASCE)GM.1943-5622.0000055
    [5]
    LIM W. Mechanics of railway baUast behaviour [D] . United Kingdom: University of Nottingham, 2004.
    [6]
    严颖, 赵春发, 李勇俊, 等. 铁路道砟破碎特性的离散元分析[J]. 计算力学学报, 2017, 34(5): 615-622.

    YAN Ying, ZHAO Chunfa, LI Yongjun, et al. Discrete element analysis of breakage characteristics of railway ballast[J]. Chinese Journal of Computational Mechanics, 2017, 34(5): 615-622.
    [7]
    XIAO J H, ZHANG X, ZHANG D, et al. Morphological reconstruction method of irregular shaped ballast particles and application in numerical simulation of ballasted track[J]. Transportation Geotechnics, 2020, 24: 100374.1-100374.12.
    [8]
    GUO Y L, MARKINE V, ZHANG X H, et al. Image analysis for morphology, rheology and degradation study of railway ballast: a review[J]. Transportation Geotechnics, 2019, 18: 173-211. doi: 10.1016/j.trgeo.2018.12.001
    [9]
    POTYONDY D O, CUNDALL P A. A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329-1364. doi: 10.1016/j.ijrmms.2004.09.011
    [10]
    SIMPSON T W, BOOKER A J, GHOSH D, et al. Approximation methods in multidisciplinary analysis and optimization: a panel discussion[J]. Structural and Multidisciplinary Optimization, 2004, 27(5): 302-313.
    [11]
    冯浩, 何鸿云, 米祖强. 基于改进遗传算法的递归神经网络非线性系统辨识[J]. 西南交通大学学报, 2002, 37(4): 404-407. doi: 10.3969/j.issn.0258-2724.2002.04.011

    FENG Hao, HE Hongyun, MI Zuqiang. Nonlinear system identification with recurrent neural network based on genetic algorithm[J]. Journal of Southwest Jiaotong University, 2002, 37(4): 404-407. doi: 10.3969/j.issn.0258-2724.2002.04.011
    [12]
    REN J, XIAO M, LIU G. Rock Macro–Meso Parameter Calibration and Optimization Based on Improved BP Algorithm and Response Surface Method in PFC 3D[J]. Energies, 2022, 15(17): 6290.1-6290.26.
    [13]
    WANG H, ZHOU M. Finding minimum contain cuboid of polyhedron with genetic algorithm[J]. Computer Engineering and Applications, 2004, 21(1): 32-34.
    [14]
    RUSSELL A R, MUIR WOOD D. Point load tests and strength measurements for brittle spheres[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(2): 272-280. doi: 10.1016/j.ijrmms.2008.04.004
    [15]
    SCHOLT\`ES L, DONZ\'E F V. A DEM model for soft and hard rocks: role of grain interlocking on strength[J]. Journal of Mechanics Physics of Solids, 2013, 61(2): 352-369. doi: 10.1016/j.jmps.2012.10.005
    [16]
    ZINGG T. Beitrag zur schotteranalyse[D]. Zürich: ETH Zurich, 1935.
    [17]
    LU R, LUO Q, WANG T F, et al. Comparison of clumps and rigid blocks in three-dimensional DEM simulations: curvature-based shape characterization[J]. Computers and Geotechnics, 2022, 151: 104991.1-104991.13.
    [18]
    赵正佳, 黄洪钟, 陈新. 优化设计求解的遗传神经网络新算法研究[J]. 西南交通大学学报, 2000, 35(1): 65-68. doi: 10.3969/j.issn.0258-2724.2000.01.016

    ZHAO Zhengjia, HUANG Hongzhong, CHEN Xin. A genetic neural network algorithm in optimum design[J]. Journal of Southwest Jiaotong University, 2000, 35(1): 65-68. doi: 10.3969/j.issn.0258-2724.2000.01.016
    [19]
    张相文, 范晨光, 何安, 等. 基于GA-BP神经网络对控制棒水力缓冲器的性能预测和结构参数优化[J]. 核动力工程, 2023, 44(6): 162-169.

    ZHANG Xiangwen, FAN Chenguang, HE An, et al. Performance prediction and structural parameter optimization of control rod hydraulic buffer based on GA-BP neural network[J]. Nuclear Power Engineering, 2023, 44(6): 162-169.
  • Relative Articles

    [1]CUI Xuhao, XIAO Hong. Dynamic Characteristics Analysis of Hardening Railway Ballast Bed Based on Discrete Element Method[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1197-1204. doi: 10.3969/j.issn.0258-2724.20200113
    [2]JING Guoqing, HUANG Hongmei, SHI Xiaoyi, CAI Xiaopei. Triaxial Test and DEM Analysis of Ballast Aggregate with Angularity Breakage[J]. Journal of Southwest Jiaotong University, 2017, 30(2): 216-221. doi: 10.3969/j.issn.0258-2724.2017.02.002
    [3] , JING Guoqing, FENG Kun, GAO Liang, WANG Jun, . DEM Simulation of Ballast Degradation and Breakage under Cyclic Loading[J]. Journal of Southwest Jiaotong University, 2012, 25(2): 187-191. doi: 10.3969/j.issn.0258-2724.2012.02.003
    [4]XU Xiaohui, CAO Yu, ZHANG Jiye. Global Exponential Synchronization of Impulsive Chaotic Neural Networks[J]. Journal of Southwest Jiaotong University, 2009, 22(6): 887-892.
    [5]XU Jun, DUWen, ZENG Qi. Evaluation of Sustainable Development in CoalEnterprises Based on BP NeuralNetwork[J]. Journal of Southwest Jiaotong University, 2005, 18(3): 375-379.
    [6]ZHANG Guang-peng, LEIBo. NeuralNetwork Online Control to Road Tunnel with LongitudinalVentilation[J]. Journal of Southwest Jiaotong University, 2005, 18(6): 765-768.
    [7]TANXiao-hui, ZHANG Ji-ye, YANG Yi-ren. G lobalExponential Stability ofHopfield NeuralNetworks[J]. Journal of Southwest Jiaotong University, 2005, 18(3): 338-342.
    [8]WUDa-hong, ZHAO Ren-da. The Load and Crack Width Model for Partially Prestressed Concrete Beams Based on Neural Network[J]. Journal of Southwest Jiaotong University, 2002, 15(3): 231-235.
    [9]GUANQin-chuan. Fuzzy Multi-objective Optimization Based on Neural Networks[J]. Journal of Southwest Jiaotong University, 2002, 15(3): 338-342.
    [10]SHEN Ying, ZHANG Cui-fang. Model Reference Adaptive Control Based on BP Neural Networks[J]. Journal of Southwest Jiaotong University, 2001, 14(5): 553-556.
    [11]ZHANG Ji-ye, YANG Yi-ren, ZENG Jing. Global Stability of Delayed Hopfield Neural Network Models[J]. Journal of Southwest Jiaotong University, 2001, 14(5): 522-525.
    [12]HUFei, JINFan. Analysis on the Characteristics of Generalized Congruence Neural Networks with an Improved Algorithm[J]. Journal of Southwest Jiaotong University, 2001, 14(2): 136-139.
    [13]YE Li-sheng, HE Feng-dao. The Learning of BP Neural Network Based on Evolutionary Programming[J]. Journal of Southwest Jiaotong University, 2001, 14(5): 545-548.
    [14]ZHAO Zheng-jia, HUANGHong-zhong, CHENXin. A Genetic-Neural Network Algorithm in Optimum Design[J]. Journal of Southwest Jiaotong University, 2000, 13(1): 65-68.
    [15]Chen Weirong, Qian Qingquan. A Neural Network Based Adaptive Feeder Relay Protection[J]. Journal of Southwest Jiaotong University, 1999, 12(5): 419-424.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-122025-012025-022025-032025-042025-052025-062025-072025-082025-092025-102025-1101020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 28.4 %FULLTEXT: 28.4 %META: 65.0 %META: 65.0 %PDF: 6.6 %PDF: 6.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 15.8 %其他: 15.8 %其他: 1.0 %其他: 1.0 %Seattle: 0.3 %Seattle: 0.3 %上海: 1.7 %上海: 1.7 %克拉玛依: 0.3 %克拉玛依: 0.3 %北京: 5.3 %北京: 5.3 %南京: 0.3 %南京: 0.3 %南昌: 1.7 %南昌: 1.7 %南通: 1.0 %南通: 1.0 %南阳: 0.3 %南阳: 0.3 %合肥: 0.3 %合肥: 0.3 %吉安: 0.7 %吉安: 0.7 %周口: 0.3 %周口: 0.3 %哈尔滨: 0.3 %哈尔滨: 0.3 %哥伦布: 0.3 %哥伦布: 0.3 %嘉兴: 0.3 %嘉兴: 0.3 %天津: 1.3 %天津: 1.3 %宣城: 1.7 %宣城: 1.7 %山景城: 4.3 %山景城: 4.3 %常州: 0.7 %常州: 0.7 %平顶山: 0.3 %平顶山: 0.3 %广州: 0.3 %广州: 0.3 %张家口: 2.0 %张家口: 2.0 %成都: 1.7 %成都: 1.7 %扬州: 1.7 %扬州: 1.7 %昆明: 0.3 %昆明: 0.3 %景德镇: 0.3 %景德镇: 0.3 %杭州: 1.0 %杭州: 1.0 %松原: 0.3 %松原: 0.3 %武汉: 0.3 %武汉: 0.3 %池州: 1.3 %池州: 1.3 %济南: 0.3 %济南: 0.3 %济宁: 1.0 %济宁: 1.0 %淄博: 0.3 %淄博: 0.3 %深圳: 0.7 %深圳: 0.7 %温州: 1.3 %温州: 1.3 %漯河: 2.3 %漯河: 2.3 %石家庄: 8.9 %石家庄: 8.9 %福州: 0.7 %福州: 0.7 %芒廷维尤: 16.8 %芒廷维尤: 16.8 %芝加哥: 0.7 %芝加哥: 0.7 %西宁: 13.5 %西宁: 13.5 %西安: 0.3 %西安: 0.3 %贵阳: 0.3 %贵阳: 0.3 %运城: 0.7 %运城: 0.7 %遵义: 0.3 %遵义: 0.3 %邯郸: 0.7 %邯郸: 0.7 %重庆: 0.3 %重庆: 0.3 %长沙: 1.0 %长沙: 1.0 %阳江: 0.3 %阳江: 0.3 %雷德蒙德: 1.3 %雷德蒙德: 1.3 %青岛: 0.3 %青岛: 0.3 %马鞍山: 0.3 %马鞍山: 0.3 %其他其他Seattle上海克拉玛依北京南京南昌南通南阳合肥吉安周口哈尔滨哥伦布嘉兴天津宣城山景城常州平顶山广州张家口成都扬州昆明景德镇杭州松原武汉池州济南济宁淄博深圳温州漯河石家庄福州芒廷维尤芝加哥西宁西安贵阳运城遵义邯郸重庆长沙阳江雷德蒙德青岛马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(2)

    Article views(196) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return