• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
CUI Kai, CI Wei, YANG Shangchuan. Influence of Sand Sampling Method on Bearing Capacity Calculation of Shallow Foundation in Discrete Element Method[J]. Journal of Southwest Jiaotong University, 2023, 58(3): 575-583. doi: 10.3969/j.issn.0258-2724.20210620
Citation: CUI Kai, CI Wei, YANG Shangchuan. Influence of Sand Sampling Method on Bearing Capacity Calculation of Shallow Foundation in Discrete Element Method[J]. Journal of Southwest Jiaotong University, 2023, 58(3): 575-583. doi: 10.3969/j.issn.0258-2724.20210620

Influence of Sand Sampling Method on Bearing Capacity Calculation of Shallow Foundation in Discrete Element Method

doi: 10.3969/j.issn.0258-2724.20210620
  • Received Date: 03 Aug 2021
  • Rev Recd Date: 16 Nov 2021
  • Available Online: 25 Oct 2022
  • Publish Date: 18 Nov 2021
  • In the discrete element numerical simulation, different sample preparation methods will lead to differences in soil void ratio and uniformity, which will affect the simulation results of bearing capacity of shallow foundation. Therefore, it is necessary to analyze the influence of different sample preparation on bearing capacity of shallow foundation. Four methods (e.g., particle amplification method, distribute method, grid method, and under compaction method) were used to prepare the samples of cohesionless sand, and the samples were balanced under the gravity field of 10g. The void ratio, horizontal stress and vertical stress of soil at different positions were monitored by measuring circle, and the average void ratio e and the lateral earth pressure coefficient K0 value less than 1 were obtained. The influence of different sample preparation methods on the bearing capacity of shallow foundation was studied by placing rigid wall on the surface of the sample and loading at the same speed to simulate the bearing capacity test of shallow foundation. The results show that the porosity ratios of samples generated by the GM and under compaction method are closer to the original target porosity ratio with an error of about 3.5%. In comparison, the porosity ratios generated by particle amplification method and distribute method are smaller than the target porosity ratio, with an error of about 20.0%. Additionally, GM presents the most homogeneous sand samples, followed by the under compaction method, distribute method and particle amplification method, respectively. Due to the varying porosity ratios and K0 of samples, the obtained bearing capacity of shallow foundation also changes. The relationship of bearing capacity obtained by different sample preparation methods in the simulation of bearing capacity of shallow foundation is : GM < underlayer compaction method < particle size amplification method < distribute method.

     

  • [1]
    CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65.
    [2]
    JIANG M J, JIANG T, CROSTA G B, et al. Modeling failure of jointed rock slope with two main joint sets using a novel DEM bond contact model[J]. Engineering Geology, 2015, 193: 79-96. doi: 10.1016/j.enggeo.2015.04.013
    [3]
    BYM T, MARKETOS G, BURLAND J B, et al. Use of a two-dimensional discrete-element line-sink model to gain insight into tunnelling-induced deformations[J]. Géotechnique, 2013, 63(9): 791-795.
    [4]
    ZHENG G, YANG X Y, ZHOU H Z, et al. A simplified prediction method for evaluating tunnel displacement induced by laterally adjacent excavations[J]. Computers and Geotechnics, 2018, 95: 119-128. doi: 10.1016/j.compgeo.2017.10.006
    [5]
    LIU Z N, KOYI H A. Kinematics and internal deformation of granular slopes: insights from discrete element modeling[J]. Landslides, 2013, 10(2): 139-160. doi: 10.1007/s10346-012-0318-8
    [6]
    XU W J, DONG X Y. Simulation and verification of landslide tsunamis using a 3D SPH-DEM coupling method[J]. Computers and Geotechnics, 2021, 129: 103803.1-103803.16.
    [7]
    CHANG C S, CHAO S J. Discrete element method for bearing capacity analysis[J]. Computers and Geotechnics, 1991, 12(4): 273-288. doi: 10.1016/0266-352X(91)90026-C
    [8]
    Itasca. Particle flow code in two dimensions[M]. Minnesota: Itasca Consulting Group, Inc. 2004.
    [9]
    戴轩,郑刚,程雪松,等. 基于DEM-CFD方法的基坑工程漏水漏砂引发地层运移规律的数值模拟[J]. 岩石力学与工程学报,2019,38(2): 396-408.

    DAI Xuan, ZHENG Gang, CHENG Xuesong, et al. Numerical simulation of ground movement induced by leakage of groundwater and sand in excavations based on the DEM-CFD method[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(2): 396-408.
    [10]
    徐琨,周伟,马刚,等. 基于离散元法的颗粒破碎模拟研究进展[J]. 岩土工程学报,2018,40(5): 880-889. doi: 10.11779/CJGE201805013

    XU Kun, ZHOU Wei, MA Gang, et al. Review of particle breakage simulation based on DEM[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 880-889. doi: 10.11779/CJGE201805013
    [11]
    金磊,曾亚武. 土石混合体宏细观力学特性和变形破坏机制的三维离散元精细模拟[J]. 岩石力学与工程学报,2018,37(6): 1540-1550.

    JIN Lei, ZENG Yawu. Refined simulation for macro-and meso-mechanical properties and failure mechanism of soil-rock mixture by 3D DEM[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(6): 1540-1550.
    [12]
    景路,郭颂怡,赵涛. 基于流体动力学-离散单元耦合算法的海底滑坡动力学分析[J]. 岩土力学,2019,40(1): 388-394.

    JING Lu, GUO Songyi, ZHAO Tao. Understanding dynamics of submarine landslide with coupled CFD-DEM[J]. Rock and Soil Mechanics, 2019, 40(1): 388-394.
    [13]
    徐文杰. 滑坡涌浪流-固耦合分析方法与应用[J]. 岩石力学与工程学报,2020,39(7): 1420-1433.

    XU Wenjie. Fluid-solid coupling method of landslide tsunamis and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(7): 1420-1433.
    [14]
    马华庆,赵永志. 喷动流化床中杆状颗粒混合特性的CFD-DEM模拟[J]. 浙江大学学报(工学版),2020,54(7): 1347-1354. doi: 10.3785/j.issn.1008-973X.2020.07.013

    MA Huaqing, ZHAO Yongzhi. CFD-DEM investigation on mixing of rod-like particles in spout-fluid bed[J]. Journal of Zhejiang University (Engineering Science), 2020, 54(7): 1347-1354. doi: 10.3785/j.issn.1008-973X.2020.07.013
    [15]
    CHO S E, LEE S R. Instability of unsaturated soil slopes due to infiltration[J]. Computers and Geotechnics, 2001, 28(3): 185-208. doi: 10.1016/S0266-352X(00)00027-6
    [16]
    CHEN X Y, ZHANG L L, ZHANG L M, et al. Modelling rainfall-induced landslides from initiation of instability to post-failure[J]. Computers and Geotechnics, 2021, 129: 103877.1-103877.16.
    [17]
    YANG S C, CI W, LESHCHINSKY B, et al. Scale effects on the ultimate bearing capacity of rectangular footings placed on slopes[J]. Computers and Geotechnics, 2021, 137: 104254.1-104254.7.
    [18]
    YANG S C, LESHCHINSKY B, CUI K, et al. Influence of failure mechanism on seismic bearing capacity factors for shallow foundations near slopes[J]. Géotechnique, 2021, 71(7): 594-607.
    [19]
    YANG S C, LESHCHINSKY B, CUI K, et al. Unified approach toward evaluating bearing capacity of shallow foundations near slopes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(12): 04019110.1-04019110.16.
    [20]
    NG T T, MEYERS R. Side resistance of drilled shafts in granular soils investigated by DEM[J]. Computers and Geotechnics, 2015, 68: 161-168. doi: 10.1016/j.compgeo.2015.04.009
    [21]
    WANG Z J, JACOBS F, ZIEGLER M, et al. Visualisation and quantification of geogrid reinforcing effects under strip footing loads using discrete element method[J]. Geotextiles and Geomembranes, 2020, 48(1): 62-70. doi: 10.1016/j.geotexmem.2019.103505
    [22]
    FU Z Z, CHEN S S, LIU S H. Discrete element simulations of shallow plate-load tests[J]. International Journal of Geomechanics, 2016, 16(3): 1-12.
    [23]
    XU R, LIU E L, JIANG X Q, et al. Analysis on evolution of mesostructure of cohesionless soil ground upon loading[J]. Powder Technology, 2020, 368: 1-17. doi: 10.1016/j.powtec.2020.04.048
    [24]
    CHA M S, SANTAMARINA J C. Effect of dissolution on the load-settlement behavior of shallow foundations[J]. Canadian Geotechnical Journal, 2016, 53(8): 1353-1357. doi: 10.1139/cgj-2014-0370
    [25]
    蒋明镜,李磊,孙超. 地基承载力尺寸效应离散元分析[J]. 同济大学学报(自然科学版),2015,43(5): 649-656.

    JIANG Mingjing, LI Lei, SUN Chao. Analysis on scale effect of bearing capacity of foundation by discrete element method[J]. Journal of Tongji University (Natural Science), 2015, 43(5): 649-656.
    [26]
    ZHONG W H, LIU H L, WANG Q, et al. Investigation of the penetration characteristics of snake skin-inspired pile using DEM[J]. Acta Geotechnica, 2021, 16(6): 1849-1865. doi: 10.1007/s11440-020-01132-2
    [27]
    DUAN N, CHENG Y P. A modified method of generating specimens for a 2D DEM centrifuge model[C]//Geo-Chicago 2016: Sustainability, Energy, and the Geoenvironment. Chicago: American Society of Civil Engineers, 2016: 610-620.
    [28]
    JIANG M J, KONRAD J M, LEROUEIL S. An efficient technique for generating homogeneous specimens for DEM studies[J]. Computers and Geotechnics, 2003, 30(7): 579-597. doi: 10.1016/S0266-352X(03)00064-8
    [29]
    GOURVENEC S M, MANA D S K. Undrained vertical bearing capacity factors for shallow foundations[J]. Géotechnique Letters, 2011, 1(4): 101-108.
    [30]
    KUSAKABE O. Geotechnical centrifuge technology[M]. London: Blackie Academic & Professional. 1995: 118-167.
    [31]
    LAU C K, BOLTON M D. The bearing capacity of footings on granular soils Ⅱ: experimental evidence[J]. Géotechnique, 2011, 61(8): 639-650.
    [32]
    CERATO A B, LUTENEGGER A J. Bearing capacity of square and circular footings on a finite layer of granular soil underlain by a rigid base[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(11): 1496-1501. doi: 10.1061/(ASCE)1090-0241(2006)132:11(1496)
    [33]
    DAVIS R O, SELVADURAI A P S. Plasticity and Geomechanics[M]. Cambridge: Cambridge University Press, 2002.
    [34]
    申志福,蒋明镜,朱方园,等. 离散元微观参数对砂土宏观参数的影响[J]. 西北地震学报,2011,33(增1): 160-165.

    SHEN Zhifu, JIANG Mingjing, ZHU Fangyuan, et al. Influence of the micro parameters of discrete element on the macro parameters of sands[J]. Northwestern Seismological Journal, 2011, 33(S1): 160-165.
    [35]
    TRAN V D H, MEGUID M A, CHOUINARD L E. A finite-discrete element framework for the 3D modeling of geogrid-soil interaction under pullout loading conditions[J]. Geotextiles and Geomembranes, 2013, 37: 1-9. doi: 10.1016/j.geotexmem.2013.01.003
    [36]
    KIM B S, PARK S W, KATO S. DEM simulation of collapse behaviours of unsaturated granular materials under general stress states[J]. Computers and Geotechnics, 2012, 42: 52-61. doi: 10.1016/j.compgeo.2011.12.010
    [37]
    NGO N T, INDRARATNA B, RUJIKIATKAMJORN C. DEM simulation of the behaviour of geogrid stabilised ballast fouled with coal[J]. Computers and Geotechnics, 2014, 55: 224-231. doi: 10.1016/j.compgeo.2013.09.008
    [38]
    BHANDARI A, HAN J. DEM study of a shallow foundation under vertical loading[C]//2009 International Foundation Congress and Equipment. Florida: American Society of Civil Engineers, 2009: 465-472.
    [39]
    LI L, JIANG M J, LI T, et al. DEM analyses of the whole failure process of shallow foundation in plate load test on dense sand[C]//IOP Conference Series: Earth and Environmental Science. Warwick: Earth and Environmental Science, 2015: 012039.1-012039.6.
  • Relative Articles

    [1]JIANG Hao, SU Zhenzhong, JIANG Yapeng. Optimized Design of High-Load Capacity Magnetic Bearings[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 965-975, 985. doi: 10.3969/j.issn.0258-2724.20240553
    [2]CHEN Long, HU Yifan, CHEN Yonghui, ZHU Lei, ZHANG Tilang. Centrifuge Test on Bearing Capacity of Energy Piles in Sand Affected by Thermal−Cool Cycles[J]. Journal of Southwest Jiaotong University, 2025, 60(1): 83-92. doi: 10.3969/j.issn.0258-2724.20220740
    [3]TANG Hongyuan, LIAO Jing, LIU Ruizhong, HU Xiaowei. Bearing Capacity of Concrete-Filled Double Skin Stub Columns with Square outer Stainless Steel tube Under Axial Compression[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 421-429. doi: 10.3969/j.issn.0258-2724.20210388
    [4]YANG Bing, ZHOU Zihong, TAO Long, FU Guanxi, ZHUO Linbo. Experimental Study on Instability Characteristic and Bearing Capacity of Slope with Bedrock under Rainfall[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 910-918. doi: 10.3969/j.issn.0258-2724.20200355
    [5]LIU Jian, ZHANG Pengcheng, JIANG Jin, TIAN Yong, LIU Changjiang, CHEN Yuan, ZHANG Shihao, CAO Zhanbin. Axial Bearing Capacity Analysis of H-Section Steel-Reinforced Recycled Aggregate Concrete Filled Circular Steel Tube Stub Columns[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1280-1286. doi: 10.3969/j.issn.0258-2724.20190244
    [6]XIANG Kai, PAN Yanchong, ZHAO Bi, WANG Guohui. Axially Loaded of Concrete-Encased Concrete Filled Steel Tubular Stub Columns after Fire[J]. Journal of Southwest Jiaotong University, 2017, 30(6): 1173-1181. doi: 10.3969/j.issn.0258-2724.2017.06.018
    [7]XIAO Hong, GAO Liang, HOU Bowen. 3D Discrete Element Analysis of Selection of Sleeper Types on High-Speed Railway Bridge[J]. Journal of Southwest Jiaotong University, 2015, 28(5): 811-816. doi: 10.3969/j.issn.0258-2724.2015.05.007
    [8]XIANG Kai, WANG Guo-Hui. Experimental Research on Load-Bearing Capacity of Fire-Damaged Reinforced Concrete Continuous T-Beams[J]. Journal of Southwest Jiaotong University, 2011, 24(6): 933-939. doi: 10.3969/j.issn.0258-2724.2011.06.008
    [9]XU Hu, YU Zhixiang, ZHAO Shichun. Load-Bearing Capacity of Reinforced Joint of Complicated Multi-dimensional Rectangular Hollow Section Truss[J]. Journal of Southwest Jiaotong University, 2010, 23(5): 698-704. doi: 10. 3969/ j. issn. 0258-2724.
    [10]PAN Yi, YANG Cheng, LIN Yongjun, ZHAO Shichun. BP Neural Network-Based Prediction of Load-Bearing Capacity of Concrete Column Reinforced by FRP[J]. Journal of Southwest Jiaotong University, 2008, 21(6): 736-739.
    [11]WU Xingxu, ZHUANG Weilin, JI Suiwang, XIONG Guobin. Field Experimental Research on Bearing Capacity of Cast-in-Situ Piles in Xigeda-Rock[J]. Journal of Southwest Jiaotong University, 2006, 19(6): 669-674.
    [12]YUAN Wen-zhong, YUZhi-qiang, XIE Tao. Vertical Bearing Capacity of Rock-Socketed Piles Influenced by Batholith Strength[J]. Journal of Southwest Jiaotong University, 2003, 16(2): 178-182.
    [13]LIUXiao-li, ZHOU De-pei, YANG Tao. Dynamic Design Method for Friction Pile with Prestressed Cable[J]. Journal of Southwest Jiaotong University, 2002, 15(5): 491-495.
    [14]WUXing-xu, YUZhi-qiang, ZHUANG Wei-lin. Discussion on Methods for Calculating Bearing Capacity of Tension Piles Set into Rock[J]. Journal of Southwest Jiaotong University, 2002, 15(2): 190-194.
    [15]HUANCshuang一hua, HUANCXiong一jun. ComPutationoftheUltlmateBearingCaPacityofSteelReinforeed ConCreteLoW-RISeShearWallSwithFrame[J]. Journal of Southwest Jiaotong University, 2001, 14(4): 360-364.
    [16]LUO Shu-xue. Calculation of Reliability Index and Resistance Partial Coefficients of Bored Pile Ultimate Bearing Capacity[J]. Journal of Southwest Jiaotong University, 2000, 13(4): 261-265.
    [17]WangXu, Wu Xingxu, Zhao Shanrui. Experimental Study on the Compaction Grouting of Pile Tip in Loess Region[J]. Journal of Southwest Jiaotong University, 1999, 12(1): 16-21.
  • Cited by

    Periodical cited type(0)

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-062025-070510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 32.3 %FULLTEXT: 32.3 %META: 60.8 %META: 60.8 %PDF: 6.8 %PDF: 6.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 11.0 %其他: 11.0 %其他: 0.1 %其他: 0.1 %Central District: 0.3 %Central District: 0.3 %Lee's Summit: 0.3 %Lee's Summit: 0.3 %Rochester: 0.4 %Rochester: 0.4 %[]: 0.3 %[]: 0.3 %上海: 1.5 %上海: 1.5 %东京: 0.1 %东京: 0.1 %东莞: 0.1 %东莞: 0.1 %临夏: 0.1 %临夏: 0.1 %临汾: 0.3 %临汾: 0.3 %保定: 0.1 %保定: 0.1 %六安: 0.3 %六安: 0.3 %兰州: 0.1 %兰州: 0.1 %北京: 5.9 %北京: 5.9 %十堰: 0.1 %十堰: 0.1 %南京: 1.9 %南京: 1.9 %南昌: 0.7 %南昌: 0.7 %南通: 0.1 %南通: 0.1 %合肥: 0.6 %合肥: 0.6 %哥伦布: 0.3 %哥伦布: 0.3 %大连: 0.1 %大连: 0.1 %天津: 1.0 %天津: 1.0 %太原: 0.3 %太原: 0.3 %安康: 0.1 %安康: 0.1 %宜宾: 0.1 %宜宾: 0.1 %宣城: 1.0 %宣城: 1.0 %广州: 0.3 %广州: 0.3 %张家口: 1.0 %张家口: 1.0 %德阳: 0.1 %德阳: 0.1 %悉尼: 0.3 %悉尼: 0.3 %成都: 2.8 %成都: 2.8 %扬州: 0.3 %扬州: 0.3 %揭阳: 0.1 %揭阳: 0.1 %无锡: 0.1 %无锡: 0.1 %昆明: 0.4 %昆明: 0.4 %来宾: 0.1 %来宾: 0.1 %杭州: 0.9 %杭州: 0.9 %武汉: 0.4 %武汉: 0.4 %池州: 0.4 %池州: 0.4 %沈阳: 0.3 %沈阳: 0.3 %泰州: 0.3 %泰州: 0.3 %洛阳: 0.3 %洛阳: 0.3 %济南: 0.3 %济南: 0.3 %海东: 0.3 %海东: 0.3 %淄博: 0.1 %淄博: 0.1 %淮南: 0.1 %淮南: 0.1 %淮安: 0.1 %淮安: 0.1 %深圳: 1.2 %深圳: 1.2 %温州: 0.9 %温州: 0.9 %漯河: 1.3 %漯河: 1.3 %澳门: 0.1 %澳门: 0.1 %烟台: 0.1 %烟台: 0.1 %石家庄: 1.0 %石家庄: 1.0 %绵阳: 0.6 %绵阳: 0.6 %芒廷维尤: 18.0 %芒廷维尤: 18.0 %芝加哥: 0.7 %芝加哥: 0.7 %苏州: 0.6 %苏州: 0.6 %西宁: 34.0 %西宁: 34.0 %西安: 0.4 %西安: 0.4 %诺沃克: 0.3 %诺沃克: 0.3 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.9 %运城: 0.9 %郑州: 0.3 %郑州: 0.3 %重庆: 0.1 %重庆: 0.1 %长沙: 1.5 %长沙: 1.5 %青岛: 0.1 %青岛: 0.1 %马里兰州: 0.1 %马里兰州: 0.1 %其他其他Central DistrictLee's SummitRochester[]上海东京东莞临夏临汾保定六安兰州北京十堰南京南昌南通合肥哥伦布大连天津太原安康宜宾宣城广州张家口德阳悉尼成都扬州揭阳无锡昆明来宾杭州武汉池州沈阳泰州洛阳济南海东淄博淮南淮安深圳温州漯河澳门烟台石家庄绵阳芒廷维尤芝加哥苏州西宁西安诺沃克贵阳运城郑州重庆长沙青岛马里兰州

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article views(409) PDF downloads(46) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return