• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 31 Issue 2
Apr.  2018
Turn off MathJax
Article Contents
WANG Jun, LIN Guojin, TANG Xie, HE Chuan. Face Stability Analysis of Shield Tunnel in Sandy Ground Using 3D DEM[J]. Journal of Southwest Jiaotong University, 2018, 53(2): 312-321. doi: 10.3969/j.issn.0258-2724.2018.02.013
Citation: WANG Jun, LIN Guojin, TANG Xie, HE Chuan. Face Stability Analysis of Shield Tunnel in Sandy Ground Using 3D DEM[J]. Journal of Southwest Jiaotong University, 2018, 53(2): 312-321. doi: 10.3969/j.issn.0258-2724.2018.02.013

Face Stability Analysis of Shield Tunnel in Sandy Ground Using 3D DEM

doi: 10.3969/j.issn.0258-2724.2018.02.013
  • Received Date: 08 Jun 2016
  • Publish Date: 25 Apr 2018
  • Based on the model test carried out by Chambon and Corte, the three-dimensional discrete element method (3D DEM) was used to study the face stability of shallow shield tunnels in sand, and the face failure mechanism was investigated from microscopic perspectives. A three-dimensional flexible stress boundary was implemented in the numerical model, and the support provided by air or fluid in the chamber for a tunnel face was simplified as specified normal pressure acting on face particles. Pressure was decreased gradually to 0 kPa, and ground deformation was closely recorded. Thus, the limit support pressure could be determined naturally. The tunnel excavation process was incorporated by deleting the particles that flowed into the tunnel, and its effect on tunnel stability was considered. Results show that when C (tunnel buried depth)/D (tunnel diameter) ≤ 1.0, the limit support pressure first increases with buried depth and then tends to be constant. The ratio of the limit support pressure to the initial support pressure decreases with buried depth. The support pressure at which ground settlement accelerates abruptly is smaller than the limit support pressure. The failure zone directly propagates up to the ground surface. In engineering practice, attention should be paid to the ground surface settlement and limit support pressure to keep the tunnel face safe. When C/D ≥ 2.0, a stable soil arch exists above the tunnel crown and extends upwards to approximately 0.7D-1.3D and 0.9D-2.3D.

     

  • loading
  • MURAYAMA S, ENDO M, HASHIBA T, et al. Geotechnical aspects for the excavating performance of the shield machines[C]//The 21st Annual Lecture in Meeting of Japan Society of Civil Engineers. Tokyo: [s.n.], 1966: 134-140.
    KRAUSE T. Schildvortrieb mit flüsigkeits-und erdgestüzter ortsbrust[D]. Brunswick: Technical University Carolo Wilhelmina, 1987.
    HORN N. Horizontal earth pressure on the vertical surfaces of the tunnel tubes[C]//National Conference of the Hungarian Civil Engineering Industry. Budapest: [s.n.], 1961: 7-16.
    ANAGNOSTOU G, KOVÁI K. Face stability condition with earth pressure balanced shields[J]. Tunnelling and Underground Space Technology, 1996, 11(2):165-73. doi: 10.1016/0886-7798(96)00017-X
    BROERE W. Tunnel face stability and new CPT application[D]. Delft: Delft University, 2001.
    ATKINSON J H, POTTS D M. Stability of a shallow circular tunnel in cohesionless soil[J]. Geotechnique, 1977, 27(2):203-215. doi: 10.1680/geot.1977.27.2.203
    DAVIS E H, GUNN M J, MAIR F R, et al. The stability of shallow tunnels and underground openings in cohesive material[J]. Geotechnique, 1980, 30(4):397-416. http://www.nrcresearchpress.com/servlet/linkout?suffix=refg6/ref6&dbid=16&doi=10.1139%2Ft11-078&key=10.1680%2Fgeot.1980.30.4.397
    LECA E, DORMIEUX L. Upper and lower bound solutions for the face stability of shallow circular tunnels in frictional material[J]. Geotechnique, 1990, 40(4):581-606. doi: 10.1680/geot.1990.40.4.581
    MOLLON G, DIAS D, SOUBRA A H. Face stability analysis of circular tunnels driven by a pressurized shield[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(1):215-229. doi: 10.1061/(ASCE)GT.1943-5606.0000194
    CHAMBON P, CORTÉ J F. Sallow tunnels in cohesionless soil:stability of tunnel face[J]. Journal of Geotechnical Engineering, 1994, 120(7):1148-1164. doi: 10.1061/(ASCE)0733-9410(1994)120:7(1148)
    KIRSCH A. Experimental investigation of the face stability of shallow tunnels in sand[J]. Acta Geotechnica, 2010, 5(1):43-62. doi: 10.1007/s11440-010-0110-7
    IDINGER G, AKLIK P, WU W, et al. Centrifuge model test on the face stability of shallow tunnel[J]. Acta Geotechnica, 2011, 6(2):43-62. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a70c6918dc14459f22917a817382e04d
    CHEN R P, LI J, KONG L G, et al. Experimental study on face stability of shield tunnel in sand[J]. Tunnelling and Underground Space Technology, 2013, 33(1):12-21. http://www.sciencedirect.com/science/article/pii/S0886779812001447
    VERMEER P A, RUSE N M, MARCHER T. Tunnel heading stability in drained ground[J]. Felsbau, 2002, 20(6):8-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0211513617
    LI Y, EMERIAULTB F, KASTNERB R, et al. Stability analysis of large slurry shield-driven tunnel in soft clay[J]. Tunnelling and Underground Space Technology, 2009, 24(4):472-481. doi: 10.1016/j.tust.2008.10.007
    CUNDALL P A, STRACK O D. A discrete numerical model for granular assemblies[J]. Géechnique, 1979, 29(1):47-65. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1208.0565
    王俊, 何川, 封坤, 等.砂卵石地层中大断面泥水盾构泥膜形态研究[J].现代隧道技术, 2014, 51(6):108-113. http://d.old.wanfangdata.com.cn/Periodical/xdsdjs201406018

    WANG Jun, HE Chuan, FENG Kun, et al. Research on the dynamic behavior of the slurry membrane of a large-section slurry shield in a sandy cobble stratum[J]. Modern Tunnelling Technology, 2014, 51(6):108-113. http://d.old.wanfangdata.com.cn/Periodical/xdsdjs201406018
    缪林昌, 王正兴, 石文博.砂土盾构隧道掘进开挖面稳定理论与颗粒流模拟研究[J].岩土工程学报, 2015, 37(1):98-104. http://d.old.wanfangdata.com.cn/Periodical/ytgcxb201501011

    MIU Lingchang, WANG Zhengxing, SHI Wenbo. Theoretical and numerical simulations of face stability around shield tunnels in sand[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1):98-104. http://d.old.wanfangdata.com.cn/Periodical/ytgcxb201501011
    CHEN R P, TANG L J, LING D S, et al. Face stability analysis of shallow shield tunnels in dry sandy ground using the discrete element method[J]. Computers and Geotechnics, 2011, 38(2):187-195. doi: 10.1016/j.compgeo.2010.11.003
    MELIS MAYNAR M J, MEDINA RODRIGUEZ L E. Discrete numerical model for analysis of earth pressure balance tunnel excavation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(10):1234-1242. http://www.emeraldinsight.com/servlet/linkout?suffix=b12&dbid=16&doi=10.1108%2F02644400910996862&key=10.1061%2F(ASCE)1090-0241(2005)131%3A10(1234)
    Itasca Consulting Group Inc. PFC3D (particle flow code in three dimensions) version 4.0 manual[M]. Minneapolis:Itasca Consulting Group Inc, 2001:101-235.
    MAIR R J, TAYLOR R N, BRACEGIRDLE A. Subsurface settlement profiles above tunnels in clays[J]. Gétechnique, 1993, 43(2):315-320.
    MAIR R J. Centrifugal modeling of tunnel construction insoft clay[D]. Cambridge: University of Cambridge, 1979.
    DYER M R, HUTCHINSON M T, EVANS N. Sudden valley sewer: a case history[C]//International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground. London: [s.n.], 1996: 671-676.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(3)

    Article views(598) PDF downloads(218) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return